scholarly journals Region-Specific Reduction in Leptin-Induced Phosphorylation of Signal Transducer and Activator of Transcription-3 (STAT3) in the Rat Hypothalamus Is Associated with Leptin Resistance during Pregnancy

Endocrinology ◽  
2004 ◽  
Vol 145 (8) ◽  
pp. 3704-3711 ◽  
Author(s):  
S. R. Ladyman ◽  
D. R. Grattan

Abstract Leptin concentrations increase during pregnancy, but this does not prevent the pregnancy-induced increase in food intake, suggesting a state of leptin resistance. This study investigated the response to intracerebroventricular leptin administration in pregnant rats. After fasting, nonpregnant, d-7 and d-14 pregnant rats received leptin (4 μg) or vehicle, then food intake was measured. Serial blood samples were collected in another group of rats to determine plasma leptin concentrations. Further groups of d-14 pregnant and nonpregnant rats were killed after leptin or vehicle treatment, and brains were collected. Hypothalamic nuclei were microdissected, and levels of signal transducer and activator of transcription (STAT)3 phosphorylation were measured using Western blot analysis. Fasting decreased leptin concentrations in both pregnant and nonpregnant rats. Leptin treatment significantly reduced food intake in nonpregnant and d-7 pregnant rats but not in d-14 pregnant rats. In addition, there was no postfasting hyperphagic response in the pregnant rats. In the pregnant rats, leptin-induced STAT3 phosphorylation was suppressed in the arcuate nucleus and, to a lesser extent, in the ventromedial hypothalamus (VMH), compared with nonpregnant rats. Unstimulated STAT3 levels were also decreased in the VMH during pregnancy. Leptin-induced phosphorylation of STAT3 in the dorsomedial and lateral hypothalamus was not different between pregnant and nonpregnant rats. These data indicate that pregnant rats become resistant to the satiety action of leptin. Furthermore, leptin-induced activation of the STAT3 is impaired during pregnancy, specifically in the arcuate nucleus and VMH. These data support the hypothesis that pregnancy is a state of hypothalamic leptin resistance.

Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1598-1610 ◽  
Author(s):  
Maria M. Glavas ◽  
Melissa A. Kirigiti ◽  
Xiao Q. Xiao ◽  
Pablo J. Enriori ◽  
Sarah K. Fisher ◽  
...  

Childhood obesity increases the risk of adult obesity and diabetes, suggesting that early overnutrition permanently programs altered energy and glucose homeostasis. In the present studies, we used a mouse model to investigate whether early overnutrition increases susceptibility to obesity and insulin resistance in response to a high-fat diet (HFD). Litters from Swiss Webster dams were culled to three [chronic postnatal overnutrition (CPO)] or 10 (control) pups and then weaned onto standard chow at postnatal day (P) 23. At 6 wk of age, a subset of mice was placed on HFD, and glucose and insulin tolerance were examined at 16–17 wk of age. Leptin sensitivity was determined by hypothalamic phosphorylated signal transducer and activator of transcription-3 immunoreactivity at P16 and adulthood after ip leptin. CPO mice exhibited accelerated body weight gain and hyperleptinemia during the preweaning period but only a slightly heavier body weight and normal glucose tolerance in adulthood on standard chow diet. Importantly, CPO mice exhibited significant leptin resistance in the arcuate nucleus, demonstrated by reduced activation of phospho-signal transducer and activator of transcription-3, as early as P16 and throughout life, despite normalized leptin levels. In response to HFD, CPO but not control mice displayed insulin resistance in response to an insulin tolerance test. In conclusion, CPO mice exhibited early and persistent leptin resistance in the arcuate nucleus and, in response to HFD, rapid development of obesity and insulin resistance. These studies suggest that early overnutrition can permanently alter energy homeostasis and significantly increase susceptibility to obesity and insulin resistance.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1509-1519 ◽  
Author(s):  
Marieke Ruiter ◽  
Patricia Duffy ◽  
Steven Simasko ◽  
Robert C. Ritter

Reduction of food intake and body weight by leptin is attributed largely to its action in the hypothalamus. However, the signaling splice variant of the leptin receptor, LRb, also is expressed in the hindbrain, and leptin injections into the fourth cerebral ventricle or dorsal vagal complex are associated with reductions of feeding and body weight comparable to those induced by forebrain leptin administration. Although these observations suggest direct hindbrain action of leptin on feeding and body weight, the possibility that hindbrain leptin administration also activates the Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling in the hypothalamus has not been investigated. Confirming earlier work, we found that leptin produced comparable reductions of feeding and body weight when injected into the lateral ventricle or the fourth ventricle. We also found that lateral and fourth ventricle leptin injections produced comparable increases of STAT3 phosphorylation in both the hindbrain and the hypothalamus. Moreover, injection of 50 ng of leptin directly into the nucleus of the solitary tract also increased STAT3 phosphorylation in the hypothalamic arcuate and ventromedial nuclei. Increased hypothalamic STAT3 phosphorylation was not due to elevation of blood leptin concentrations and the pattern of STAT3 phosphorylation did not overlap distribution of the retrograde tracer, fluorogold, injected via the same cannula. Our observations indicate that even small leptin doses administered to the hindbrain can trigger leptin-related signaling in the forebrain, and raise the possibility that STAT3 phosphorylation in the hypothalamus may contribute to behavioral and metabolic changes observed after hindbrain leptin injections.


2007 ◽  
Vol 292 (3) ◽  
pp. E913-E919 ◽  
Author(s):  
B. M. McGowan ◽  
S. A. Stanley ◽  
N. E. White ◽  
A. Spangeus ◽  
M. Patterson ◽  
...  

The insulin superfamily, characterized by common disulphide bonds, includes not only insulin but also insulin-like peptides such as relaxin-1 and relaxin-3. The actions of relaxin-3 are largely unknown, but recent work suggests a role in regulation of food intake. Relaxin-3 mRNA is highly expressed in the nucleus incertus, which has extensive projections to the hypothalamus, and relaxin immunoreactivity is present in several hypothalamic nuclei. In the rat, relaxin-3 binds and activates both relaxin family peptide receptor 1, which also binds relaxin-1, and a previously orphaned G protein-coupled receptor, RXFP3. These receptors are extensively expressed in the hypothalamus. The aims of these studies were twofold: 1) map the hypothalamic site(s) of the orexigenic action of relaxin-3 and 2) examine the site(s) of neuronal activation following central relaxin-3 administration. After microinjection into hypothalamic sites, human relaxin-3 (H3; 180 pmol) significantly stimulated 0- to 1-h food intake in the supraoptic nucleus (SON), arcuate nucleus (ARC), and the anterior preoptic area (APOA) [SON 0.4 ± 0.2 (vehicle) vs. 2.9 ± 0.5 g (H3), P < 0.001; ARC 0.7 ± 0.3 (vehicle) vs. 2.7 ± 0.2 g (H3), P < 0.05; and APOA 0.8 ± 0.1 (vehicle) vs. 2.2 ± 0.2 g (H3), P < 0.05]. Cumulative food intake was significantly increased ≤8 h following administration into the SON and 4 h into the APOA. A significant increase in Fos-like immunoreactivity was seen in the SON following central relaxin-3 administration. Relaxin-3 stimulates feeding in several hypothalamic nuclei, and these studies provide additional support for relaxin-3 as an important peptide in appetite regulation.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 364-364
Author(s):  
Dorota A Zieba ◽  
Weronika Biernat ◽  
Malgorzata Szczesna ◽  
Katarzyna Kirsz ◽  
Tomasz Misztal

Abstract Leptin and resistin play important roles in regulating body weight and glucose metabolism. Herein, we hypothesized that resistin is a factor leading to decreased tissue sensitivity to leptin through effects on SOCS-3 and LeptRb expression. Expression of SOCS-3 and LeptRb were determined using Real-Time PCR in selected brain tissues: arcuate nucleus (ARC), ventro- and dorsomedial nuclei (VMH/DMH), preoptic area (POA) and anterior pituitary (AP). Thirty ewes (10/group), ovariectomized with E2-replacement, were fed ad libitum and housed under natural photoperiod. Intravenous treatments consisted of 1) control, 2) low dose of rbresistin (R1; 1.0 μg/kg BW), and 3) high dose of rbresistin (R2; 10.0 μg/kg BW). During long days (LD), LeptRb transcript in ARC decreased in response to R2 (P &lt; 0.001) compared to Control. Expression of LeptRb in VMH/DMH decreased in response to R1(P &lt; 0.001) and R2 (P &lt; 0.001) during short days (SD) and to R2 (P &lt; 0.001) during LD. Conversely, LeptrB transcript increased (P &lt; 0.001) 8-fold in R1 and 4-fold in R2 (P &lt; 0.05) in POA during SD. LeptrB transcript in the AP increased (P &lt; 0.001) 2.1- and 1.8-fold, respectively, in response to R1 and R2 during LD. Within the ARC, SOCS-3 expression increased (P &lt; 0.001) after R2 in LD. In POA, a 2.3-fold (P &lt; 0.001) increase was noted in R2 only during LD. Moreover, SOCS-3 transcript increased in the AP during both LD (8.5-fold) and SD (5.8-fold) in response to R2 (P &lt; 0.001). Evidence indicates that resistin resulted in a consistent decrease in LeptRb (except POA) and increase in SOCS-3 expression during LD in all hypothalamic nuclei. In AP, resistin increased SOCS-3 during both LD and SD and LeptRb transcript during LD. Taken together, the effects of resistin appear to be strongly associated with photoperiod-driven changes in the leptin signaling pathway, which may underlie the phenomenon of leptin resistance.


2013 ◽  
Vol 52 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Yoshihiro Suzuki ◽  
Keiko Nakahara ◽  
Keisuke Maruyama ◽  
Rieko Okame ◽  
Takuya Ensho ◽  
...  

The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation.


Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 3868-3874 ◽  
Author(s):  
S. R. Ladyman ◽  
D. R. Grattan

Abstract Pregnancy in the rat is a state of leptin resistance associated with impaired leptin signal transduction in the hypothalamus. The aim of this study was to determine whether this leptin-resistant state is mediated by a change in the level of leptin receptors in the hypothalamus. Real-time RT-PCR was used to determine levels of mRNA for the various leptin receptor isoforms in a number of microdissected hypothalamic nuclei and the choroid plexus. To investigate the functional activation of the leptin receptor, immunohistochemistry for phosphorylated signal transducer and activator of transcription 3 (pSTAT3) was examined in the arcuate nucleus and the ventromedial nucleus of the hypothalamus (VMH) of fasted diestrous and d-14 pregnant rats after an intracerebroventricular (i.c.v.) injection of either leptin (4 μg) or vehicle. A significant reduction of Ob-Rb mRNA levels was observed in the VMH during pregnancy compared with the nonpregnant controls. Furthermore, in pregnant rats the number of cells positive for leptin-induced pSTAT3 in the VMH was greatly reduced during pregnancy compared with nonpregnant rats. There were no differences in the level of Ob-Rb mRNA or in the number of leptin-induced pSTAT3-positive cells in the arcuate nucleus of nonpregnant and pregnant rats. These data implicate the VMH as a key hypothalamic site involved in pregnancy-induced leptin resistance. There were also reduced levels of mRNA for Ob-Ra, a proposed leptin transporter molecule, in the choroid plexus on d 7 and 21 of pregnancy. Hence, diminished transport of leptin into the brain may also contribute to pregnancy-induced leptin resistance.


2016 ◽  
Vol 310 (4) ◽  
pp. R355-R365 ◽  
Author(s):  
Ambrose A. Dunn-Meynell ◽  
Christelle Le Foll ◽  
Miranda D. Johnson ◽  
Thomas A. Lutz ◽  
Matthew R. Hayes ◽  
...  

Amylin enhances arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei leptin signaling and synergistically reduces food intake and body weight in selectively bred diet-induced obese (DIO) rats. Since DIO 125I-amylin dorsomedial nucleus-dorsomedial VMN binding was reduced, we postulated that this contributed to DIO ventromedial hypothalamus (VMH) leptin resistance, and that impairing VMH (ARC + VMN) calcitonin receptor (CTR)-mediated signaling by injecting adeno-associated virus (AAV) expressing a short hairpin portion of the CTR mRNA would predispose diet-resistant (DR) rats to obesity on high-fat (45%) diet (HFD). Depleting VMH CTR by 80–90% in 4-wk-old male DR rats reduced their ARC and VMN 125I-labeled leptin binding by 57 and 51%, respectively, and VMN leptin-induced phospho-signal transducer and activator of transcription 3-positive neurons by 59% vs. AAV control rats. After 6 wk on chow, VMH CTR-depleted DR rats ate and gained the equivalent amount of food and weight but had 18% heavier fat pads (relative to carcass weight), 144% higher leptin levels, and were insulin resistant compared with control AAV DR rats. After 6 wk more on HFD, VMH CTR-depleted DR rats ate the same amount but gained 28% more weight, had 60% more carcass fat, 254% higher leptin levels, and 132% higher insulin areas under the curve during an oral glucose tolerance test than control DR rats. Therefore, impairing endogenous VMH CTR-mediated signaling reduced leptin signaling and caused DR rats to become more obese and insulin resistant, both on chow and HFD. These results suggest that endogenous VMH amylin signaling is required for full leptin signaling and protection from HFD-induced obesity.


2004 ◽  
Vol 181 (1) ◽  
pp. 1-10 ◽  
Author(s):  
J Ren

The obese gene product, leptin, plays a central role in food intake and energy metabolism. The physiological roles of leptin in human bodily function have been broadened over the past decade since leptin was first discovered in 1994. Evidence has suggested that leptin plays a specific role in the intricate cascade of cardiovascular events, in addition to its well-established metabolic effects. Leptin, a hormone linking adiposity and central nervous circuits to reduce appetite and enhance energy expenditure, has been shown to increase overall sympathetic nerve activity, facilitate glucose utilization and improve insulin sensitivity. In addition, leptin is capable of regulating cardiac and vascular contractility through a local nitric oxide-dependent mechanism. However, elevated plasma leptin levels or hyperleptinemia, have been demonstrated to correlate with hyperphagia, insulin resistance and other markers of the metabolic syndrome including obesity, hyperlipidemia and hypertension, independent of total adiposity. Elevated plasma leptin levels may be an independent risk factor for the development of cardiovascular disease. Although mechanisms leading to hyperleptinemia have not been well described, factors such as increased food intake and insulin resistance have been shown to rapidly enhance plasma leptin levels and subsequently tissue leptin resistance. These findings have prompted the speculation that leptin in the physiological range may serve as a physiological regulator of cardiovascular function whereas elevated plasma leptin levels may act as a pathophysiological trigger and/or marker for cardiovascular diseases due to tissue leptin resistance.


2007 ◽  
Vol 192 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Elżbieta Król ◽  
John R Speakman

Adult mammals are typically highly resistant to perturbations in their energy balance. In obese humans, however, this control appears to be lost. Apart from a few exceptional cases, this loss of control occurs despite appropriate levels of circulating leptin – suggesting that elevated adiposity may be a consequence of failure to respond to the leptin signal: leptin resistance. When cold-acclimated male field voles (Microtus agrestis) are transferred from short (SD, 8 h light) to long (LD, 16 h light) photoperiods, they increase dramatically in body mass and fatness for about 4 weeks. After this period, their mass stabilizes at a new plateau about 25% higher than animals maintained in SD. The increase in adiposity is not caused by significant increases in food intake, but reflects an increase in digestive efficiency. Measures of circulating leptin reveal that the increased adiposity is matched by increased circulating leptin. By infusing voles with exogenous leptin, we have demonstrated that SD voles are leptin sensitive (reducing both body mass and food intake), whereas LD animals are leptin resistant. Voles may therefore be a useful model for understanding the process of leptin resistance. The change in leptin sensitivity in voles was not associated with changes in the levels of gene expression of the orexogenic or anorexogenic neuropeptides, such as neuropeptide Y, agouti-related peptide, POMC and cocaine- and amphetamine-regulated transcript, measured in the hypothalamic arcuate nucleus (ARC). During the phase that body mass was increasing, however, there was a transient increase in the ARC expression of suppressor of cytokine signalling-3 (SOCS3). These data suggest that the changes in the expression of SOCS3 in the ARC may be involved in leptin resistance. However, the mechanism by which these changes may be linked to alterations in digestive efficiency that underpin the changes in adiposity, or how the differences are signalled by changes in photoperiod, remains unclear.


2016 ◽  
Vol 310 (11) ◽  
pp. R1186-R1192 ◽  
Author(s):  
Christelle Le Foll ◽  
Barry E. Levin

Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where “metabolic sensing neurons” integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis.


Sign in / Sign up

Export Citation Format

Share Document