scholarly journals Regulation of Kiss1 Gene Expression in the Brain of the Female Mouse

Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 3686-3692 ◽  
Author(s):  
Jeremy T. Smith ◽  
Matthew J. Cunningham ◽  
Emilie F. Rissman ◽  
Donald K Clifton ◽  
Robert A. Steiner

The Kiss1 gene encodes a family of neuropeptides called kisspeptins, which activate the receptor G protein-coupled receptor-54 and play a role in the neuroendocrine regulation of GnRH secretion. We examined whether estradiol (E2) regulates KiSS-1 in the forebrain of the female mouse by comparing KiSS-1 mRNA expression among groups of ovary-intact (diestrus), ovariectomized (OVX), and OVX plus E2-treated mice. In the arcuate nucleus (Arc), KiSS-1 expression increased after ovariectomy and decreased with E2 treatment. Conversely, in the anteroventral periventricular nucleus (AVPV), KiSS-1 expression was reduced after ovariectomy and increased with E2 treatment. To determine whether the effects of E2 on KiSS-1 are mediated through estrogen receptor (ER)α or ERβ, we evaluated the effects of E2 in OVX mice that lacked functional ERα or ERβ. In OVX mice that lacked functional ERα, KiSS-1 mRNA did not respond to E2 in either the Arc or AVPV, suggesting that ERα is essential for mediating the inhibitory and stimulatory effects of E2. In contrast, KiSS-1 mRNA in OVX mice that lacked functional ERβ responded to E2 exactly as wild-type animals. Double-label in situ hybridization revealed that virtually all KiSS-1-expressing neurons in the Arc and AVPV coexpress ERα, suggesting that the effects of E2 are mediated directly through KiSS-1 neurons. We conclude that KiSS-1 neurons in the Arc, which are inhibited by E2, may play a role in the negative feedback regulation of GnRH secretion, whereas KiSS-1 neurons in the AVPV, which are stimulated by E2, may participate in the positive feedback regulation of GnRH secretion.

Reproduction ◽  
2006 ◽  
Vol 131 (4) ◽  
pp. 623-630 ◽  
Author(s):  
Jeremy T Smith ◽  
Donald K Clifton ◽  
Robert A Steiner

The Kiss1 gene codes for a family of peptides that act as endogenous ligands for the G protein-coupled receptor GPR54. Spontaneous mutations or targeted deletions of GPR54 in man and mice produce hypogonadotropic hypogonadism and infertility. Centrally administered kisspeptins stimulate gonadotropin secretion by acting directly on GnRH neurons. Sex steroids regulate the expression of KiSS-1 mRNA in the brain through direct action on KiSS-1 neurons. In the arcuate nucleus (Arc), sex steroids inhibit the expression of KiSS-1, suggesting that these neurons serve as a conduit for the negative feedback regulation of gonadotropin secretion. In the anteroventral periventricular nucleus (AVPV), sex steroids induce the expression of KiSS-1, implying that KiSS-1 neurons in this region may have a role in the preovulatory LH surge (in the female) or sexual behavior (in the male).


Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1154-1158 ◽  
Author(s):  
Heather M. Dungan ◽  
Donald K Clifton ◽  
Robert A. Steiner

The Kiss1 gene encodes a family of peptides called kisspeptins, which bind to the G protein-coupled receptor GPR54. Kisspeptin(s) and its receptor are expressed in the forebrain, and the discovery that mice and humans lacking a functional GPR54 fail to undergo puberty and exhibit hypogonadotropic hypogonadism implies that kisspeptin signaling plays an essential role in reproduction. Studies in several mammalian species have shown that kisspeptins stimulate the secretion of gonadotropins from the pituitary by stimulating the release of GnRH from the forebrain after the activation of GPR54, which is expressed by GnRH neurons. Kisspeptin is expressed abundantly in the arcuate nucleus (Arc) and the anteroventral periventricular nucleus (AVPV) of the forebrain. Both estradiol and testosterone regulate the expression of the Kiss1 gene in the Arc and AVPV; however, the response of the Kiss1 gene to these steroids is exactly opposite between these two nuclei. Estradiol and testosterone down-regulate Kiss1 mRNA in the Arc and up-regulate its expression in the AVPV. Thus, kisspeptin neurons in the Arc may participate in the negative feedback regulation of gonadotropin secretion, whereas kisspeptin neurons in the AVPV may contribute to generating the preovulatory gonadotropin surge in the female. Hypothalamic levels of Kiss1 and GPR54 mRNA increase dramatically at puberty, suggesting that kisspeptin signaling could mediate the neuroendocrine events that trigger the onset of puberty. Together, these observations demonstrate that kisspeptin-GPR54 signaling in the brain serves as an important conduit for controlling GnRH secretion in the developing and adult animal.


2021 ◽  
Author(s):  
Evin Magner ◽  
Pamela Sandoval-Sanchez ◽  
Peter F Hitchcock ◽  
Scott M Taylor

Abstract In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), Müller glia function as intrinsic stem cells, producing progenitor cells that regenerate photoreceptors and restore vision. MicroRNAs (miRNAs) critically regulate neurogenesis in the brain and retina, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. The miRNA miR-18a regulates photoreceptor differentiation in the embryonic retina. The purpose of the current study was to determine the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in-situ hybridization (ISH) and immunohistochemistry (IHC) showed that miR-18a expression increases throughout the retina by 1-day post-injury (dpi) and continues to increase through 5 dpi. Bromodeoxyuridine (BrdU) labeling showed that at 7 and 10 dpi, when regenerated photoreceptors are normally differentiating, there are more proliferating Müller glia-derived progenitors in homozygous miR-18a mutant (miR-18ami5012) retinas compared with wild type (WT), indicating that miR-18a negatively regulates injury-induced proliferation. At 7 and 10 dpi, miR-18ami5012 retinas have fewer mature photoreceptors than WT, but there is no difference at 14 dpi, revealing that photoreceptor regeneration is delayed. BrdU labeling showed that the excess progenitors in miR-18ami5012 retinas migrate to other retinal layers besides the photoreceptor layer. Inflammation is critical for photoreceptor regeneration and RT-qPCR showed that, in the absence of miR-18a, inflammation is prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that during injury-induced photoreceptor regeneration, miR-18a regulates proliferation and photoreceptor regeneration by regulating key aspects of the inflammatory response during photoreceptor regeneration in zebrafish.


2018 ◽  
Author(s):  
Eylan Yutuc ◽  
Roberto Angelini ◽  
Mark Baumert ◽  
Natalia Mast ◽  
Irina Pikuleva ◽  
...  

AbstractDysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatisation in combination with micro-liquid-extraction for surface analysis and liquid chromatography - mass spectrometry to image sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400 µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low abundance and difficult to ionise sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild type and cholesterol 24S-hydroxylase knock-out mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.SignificanceThe brain is a remarkably complex organ and cholesterol homeostasis underpins brain function. It is known that cholesterol is not evenly distributed across different brain regions, however, the precise map of cholesterol metabolism in the brain remains unclear. If cholesterol metabolism is to be correlated with brain function it is essential to generate such a map. Here we describe an advanced mass spectrometry imaging platform to reveal spatial cholesterol metabolism in situ at 400 µm resolution on 10 µm tissue slices from mouse brain. We mapped, not only cholesterol, but also other biologically active sterols arising from cholesterol turnover in both wild type and mice lacking cholesterol 24-hydroxylase (Cyp46a1), the major cholesterol metabolising enzyme.


1995 ◽  
Vol 14 (18) ◽  
pp. 4442-4449 ◽  
Author(s):  
J. Mosner ◽  
T. Mummenbrauer ◽  
C. Bauer ◽  
G. Sczakiel ◽  
F. Grosse ◽  
...  

2003 ◽  
Vol 374 (2) ◽  
pp. 281-296 ◽  
Author(s):  
Tim D. WERRY ◽  
Graeme F. WILKINSON ◽  
Gary B. WILLARS

Alteration in [Ca2+]i (the intracellular concentration of Ca2+) is a key regulator of many cellular processes. To allow precise regulation of [Ca2+]i and a diversity of signalling by this ion, cells possess many mechanisms by which they are able to control [Ca2+]i both globally and at the subcellular level. Among these are many members of the superfamily of GPCRs (G-protein-coupled receptors), which are characterized by the presence of seven transmembrane domains. Typically, those receptors able to activate PLC (phospholipase C) enzymes cause release of Ca2+ from intracellular stores and influence Ca2+ entry across the plasma membrane. It has been well documented that Ca2+ signalling by one type of GPCR can be influenced by stimulation of a different type of GPCR. Indeed, many studies have demonstrated heterologous desensitization between two different PLC-coupled GPCRs. This is not surprising, given our current understanding of negative-feedback regulation and the likely shared components of the signalling pathway. However, there are also many documented examples of interactions between GPCRs, often coupling preferentially to different signalling pathways, which result in a potentiation of Ca2+ signalling. Such interactions have important implications for both the control of cell function and the interpretation of in vitro cell-based assays. However, there is currently no single mechanism that adequately accounts for all examples of this type of cross-talk. Indeed, many studies either have not addressed this issue or have been unable to determine the mechanism(s) involved. This review seeks to explore a range of possible mechanisms to convey their potential diversity and to provide a basis for further experimental investigation.


1995 ◽  
Vol 269 (4) ◽  
pp. E716-E722
Author(s):  
K. A. Burton ◽  
E. B. Kabigting ◽  
R. A. Steiner ◽  
D. K. Clifton

Growth hormone (GH) participates in the regulation of its own secretion by acting through a short-loop feedback mechanism to regulate the synthesis and secretion of somatostatin (SS) and growth hormone-releasing hormone (GHRH). The mechanism of GH's action in certain peripheral targets involves the induction of c-fos. Similarly, we hypothesized that GH induces the expression of c-fos mRNA in SS and GHRH neurons in the hypothalamus. Using in situ hybridization, we observed a significant induction of c-fos mRNA in the arcuate nucleus of human GH-treated compared with control animals. Contrary to our hypothesis, only 11% of GHRH mRNA-containing and 5% of SS mRNA-containing neurons colabeled for c-fos mRNA. These findings indicate that GH feedback on the hypothalamus includes the induction of c-fos mRNA primarily in neurons other than GHRH and SS in the arcuate nucleus and suggest that these unidentified neurons located in the arcuate nucleus are directly involved in transducing the effects of GH in the brain.


Endocrinology ◽  
2018 ◽  
Vol 159 (9) ◽  
pp. 3187-3199 ◽  
Author(s):  
Peyton W Weems ◽  
Lique M Coolen ◽  
Stanley M Hileman ◽  
Steven Hardy ◽  
Rick B McCosh ◽  
...  

Abstract A subpopulation of neurons located within the arcuate nucleus, colocalizing kisspeptin, neurokinin B, and dynorphin (Dyn; termed KNDy neurons), represents key mediators of pulsatile GnRH secretion. The KNDy model of GnRH pulse generation proposes that Dyn terminates each pulse. However, it is unknown where and when during a pulse that Dyn is released to inhibit GnRH secretion. Dyn acts via the κ opioid receptor (KOR), and KOR is present in KNDy and GnRH neurons in sheep. KOR, similar to other G protein–coupled receptors, are internalized after exposure to ligand, and thus internalization can be used as a marker of endogenous Dyn release. Thus, we hypothesized that KOR will be internalized at pulse termination in both KNDy and GnRH neurons. To test this hypothesis, GnRH pulses were induced in gonad-intact anestrous ewes by injection of neurokinin B (NKB) into the third ventricle and animals were euthanized at times of either pulse onset or termination. NKB injections produced increased internalization of KOR within KNDy neurons during both pulse onset and termination. In contrast, KOR internalization into GnRH neurons was seen only during pulse termination, and only in GnRH neurons within the mediobasal hypothalamus (MBH). Overall, our results indicate that Dyn is released onto KNDy cells at the time of pulse onset, and continues to be released during the duration of the pulse. In contrast, Dyn is released onto MBH GnRH neurons only at pulse termination and thus actions of Dyn upon KNDy and GnRH cell bodies may be critical for pulse termination.


1995 ◽  
Vol 121 (S1) ◽  
pp. A72-A72 ◽  
Author(s):  
Jörn Mosner ◽  
Christian Bauer ◽  
Wolfgang Deppert

Sign in / Sign up

Export Citation Format

Share Document