scholarly journals The microRNA miR-18a Links Proliferation and Inflammation During Photoreceptor Regeneration in the Injured Zebrafish Retina

Author(s):  
Evin Magner ◽  
Pamela Sandoval-Sanchez ◽  
Peter F Hitchcock ◽  
Scott M Taylor

Abstract In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), Müller glia function as intrinsic stem cells, producing progenitor cells that regenerate photoreceptors and restore vision. MicroRNAs (miRNAs) critically regulate neurogenesis in the brain and retina, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. The miRNA miR-18a regulates photoreceptor differentiation in the embryonic retina. The purpose of the current study was to determine the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in-situ hybridization (ISH) and immunohistochemistry (IHC) showed that miR-18a expression increases throughout the retina by 1-day post-injury (dpi) and continues to increase through 5 dpi. Bromodeoxyuridine (BrdU) labeling showed that at 7 and 10 dpi, when regenerated photoreceptors are normally differentiating, there are more proliferating Müller glia-derived progenitors in homozygous miR-18a mutant (miR-18ami5012) retinas compared with wild type (WT), indicating that miR-18a negatively regulates injury-induced proliferation. At 7 and 10 dpi, miR-18ami5012 retinas have fewer mature photoreceptors than WT, but there is no difference at 14 dpi, revealing that photoreceptor regeneration is delayed. BrdU labeling showed that the excess progenitors in miR-18ami5012 retinas migrate to other retinal layers besides the photoreceptor layer. Inflammation is critical for photoreceptor regeneration and RT-qPCR showed that, in the absence of miR-18a, inflammation is prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that during injury-induced photoreceptor regeneration, miR-18a regulates proliferation and photoreceptor regeneration by regulating key aspects of the inflammatory response during photoreceptor regeneration in zebrafish.

2021 ◽  
Author(s):  
Evin Magner ◽  
Pamela Sandoval-Sanchez ◽  
Peter F Hitchcock ◽  
Scott M Taylor

In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), Müller glia function as intrinsic stem cells, producing progenitor cells that regenerate photoreceptors and restore vision. MicroRNAs (miRNAs) critically regulate neurogenesis in the brain and retina, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. The miRNA miR-18a regulates photoreceptor differentiation in the embryonic retina. The purpose of the current study was to determine the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in-situ hybridization (ISH) and immunohistochemistry (IHC) showed that miR-18a expression increases throughout the retina by 1-day post-injury (dpi) and continues to increase through 5 dpi. Bromodeoxyuridine (BrdU) labeling showed that at 7 and 10 dpi, when regenerated photoreceptors are normally differentiating, there are more proliferating Müller glia-derived progenitors in homozygous miR-18a mutant (miR-18ami5012) retinas compared with wild type (WT), indicating that miR-18a negatively regulates injury-induced proliferation. At 7 and 10 dpi, miR-18ami5012 retinas have fewer mature photoreceptors than WT, but there is no difference at 14 dpi, revealing that photoreceptor regeneration is delayed. BrdU labeling showed that the excess progenitors in miR-18ami5012 retinas migrate to other retinal layers besides the photoreceptor layer. Inflammation is critical for photoreceptor regeneration and RT-qPCR showed that, in the absence of miR-18a, inflammation is prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that during injury-induced photoreceptor regeneration, miR-18a regulates proliferation and photoreceptor regeneration by regulating key aspects of the inflammatory response during photoreceptor regeneration in zebrafish.


2021 ◽  
Author(s):  
Evin Magner ◽  
Pamela Sandoval-Sanchez ◽  
Ashley C Kramer ◽  
Ryan Thummel ◽  
Peter F Hitchcock ◽  
...  

Abstract In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), photoreceptor loss reprograms Müller glia to function as stem cells, producing progenitors that fully regenerate photoreceptors. MicroRNAs (miRNAs) regulate neurogenesis in the CNS, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. In the embryonic zebrafish retina, miRNA miR-18a regulates photoreceptor differentiation. The purpose of the current study was to determine in zebrafish the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in-situ hybridization and immunohistochemistry showed that miR-18a expression increases throughout the retina by 1-day post-injury (dpi) and increases through 5 dpi. To test miR-18a function during photoreceptor regeneration, we used homozygous miR-18a mutants (miR-18ami5012), and knocked down miR-18a with morpholino oligonucleotides. During photoreceptor regeneration, miR-18ami5012 retinas have fewer mature photoreceptors than WT at 7 and 10 dpi, but there is no difference at 14 dpi, indicating that photoreceptor regeneration is delayed. Labeling dividing cells with bromodeoxyuridine (BrdU) showed that at 7 and 10 dpi, there are excess Müller glia-derived progenitors in both mutants and morphants, indicating that miR-18a negatively regulates injury-induced proliferation. Tracing BrdU-labeled cells showed that in miR-18ami5012 retinas excess progenitors migrate to other retinal layers in addition to the photoreceptor layer. Inflammation is critical for photoreceptor regeneration, and RT-qPCR showed that in miR-18ami5012 retinas, inflammatory gene expression and microglia activation are prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that during photoreceptor regeneration in zebrafish, miR-18a regulates proliferation and photoreceptor regeneration by regulating the inflammatory response.


2018 ◽  
Author(s):  
Eylan Yutuc ◽  
Roberto Angelini ◽  
Mark Baumert ◽  
Natalia Mast ◽  
Irina Pikuleva ◽  
...  

AbstractDysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatisation in combination with micro-liquid-extraction for surface analysis and liquid chromatography - mass spectrometry to image sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400 µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low abundance and difficult to ionise sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild type and cholesterol 24S-hydroxylase knock-out mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.SignificanceThe brain is a remarkably complex organ and cholesterol homeostasis underpins brain function. It is known that cholesterol is not evenly distributed across different brain regions, however, the precise map of cholesterol metabolism in the brain remains unclear. If cholesterol metabolism is to be correlated with brain function it is essential to generate such a map. Here we describe an advanced mass spectrometry imaging platform to reveal spatial cholesterol metabolism in situ at 400 µm resolution on 10 µm tissue slices from mouse brain. We mapped, not only cholesterol, but also other biologically active sterols arising from cholesterol turnover in both wild type and mice lacking cholesterol 24-hydroxylase (Cyp46a1), the major cholesterol metabolising enzyme.


Development ◽  
1999 ◽  
Vol 126 (11) ◽  
pp. 2335-2343 ◽  
Author(s):  
H. Morsli ◽  
F. Tuorto ◽  
D. Choo ◽  
M.P. Postiglione ◽  
A. Simeone ◽  
...  

The Otx1 and Otx2 genes are two murine orthologues of the Orthodenticle (Otd) gene in Drosophila. In the developing mouse embryo, both Otx genes are expressed in the rostral head region and in certain sense organs such as the inner ear. Previous studies have shown that mice lacking Otx1 display abnormal patterning of the brain, whereas embryos lacking Otx2 develop without heads. In this study, we examined, at different developmental stages, the inner ears of mice lacking both Otx1 and Otx2 genes. In wild-type inner ears, Otx1, but not Otx2, was expressed in the lateral canal and ampulla, as well as part of the utricle. Ventral to the mid-level of the presumptive utricle, Otx1 and Otx2 were co-expressed, in regions such as the saccule and cochlea. Paint-filled membranous labyrinths of Otx1−/− mutants showed an absence of the lateral semicircular canal, lateral ampulla, utriculosaccular duct and cochleosaccular duct, and a poorly defined hook (the proximal part) of the cochlea. Defects in the shape of the saccule and cochlea were variable in Otx1−/− mice and were much more severe in an Otx1−/−;Otx2(+/)- background. Histological and in situ hybridization experiments of both Otx1−/− and Otx1−/−;Otx2(+/)- mutants revealed that the lateral crista was absent. In addition, the maculae of the utricle and saccule were partially fused. In mutant mice in which both copies of the Otx1 gene were replaced with a human Otx2 cDNA (hOtx2(1)/ hOtx2(1)), most of the defects associated with Otx1−/− mutants were rescued. However, within the inner ear, hOtx2 expression failed to rescue the lateral canal and ampulla phenotypes, and only variable rescues were observed in regions where both Otx1 and Otx2 are normally expressed. These results suggest that both Otx genes play important and differing roles in the morphogenesis of the mouse inner ear and the development of its sensory organs.


1999 ◽  
Vol 277 (5) ◽  
pp. R1435-R1443 ◽  
Author(s):  
Jian-Hua Yao ◽  
Shi-Ming Ye ◽  
William Burgess ◽  
James F. Zachary ◽  
Keith W. Kelley ◽  
...  

Interleukin-1β (IL-1β) is expressed in the mouse brain after intracerebroventricular injection of lipopolysaccharide (LPS) and is thought to be responsible for many of the behavioral and neuroendocrine changes that occur during inflammation. In this study we show that LPS in the brain also induces expression of interleukin-1β converting enzyme (ICE) and that ICE is important for the characteristic anorectic response of mice to intracerebroventricular LPS. Specifically, mice that were deficient in ICE (ICE−/−) resisted the anorexia caused by intracerebroventricular injection of LPS but were sensitive to the anorectic properties of recombinant IL-1β. The typical anorectic response seen in wild-type (WT) mice after LPS was restored in ICE−/−mice by intracerebroventricular administration of the ICE analog cathepsin G. Conversely, anorexia induced by intracerebroventricular injection of LPS in WT mice was blocked by prior intracerebroventricular injection of the ICE antagonist YVAD.CMK. Furthermore, in situ hybridization immunohistochemistry revealed intense expression of ICE mRNA in the hippocampus and dorsomedial hypothalamus of WT mice after intracerebroventricular injection of LPS. Thus ICE mRNA is expressed in brain after intracerebroventricular injection of LPS and is important for induction of anorexia, presumably because it generates mature IL-1β. These results suggest that preventing generation of mature IL-1β can inhibit anorexia induced by LPS in the brain and, therefore, reveal ICE as a potential target for regulating food intake during brain inflammation.


2012 ◽  
Vol 302 (11) ◽  
pp. G1336-G1342 ◽  
Author(s):  
Go Yoshimichi ◽  
Chunmin C. Lo ◽  
Kellie L. K. Tamashiro ◽  
Liyun Ma ◽  
Dana M. Lee ◽  
...  

Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are satiation factors secreted by the small intestine in response to lipid meals. Apo AIV and CCK-8 has an additive effect to suppress food intake relative to apo AIV or CCK-8 alone. In this study, we determined whether CCK-8 (1, 3, or 5 μg/kg ip) reduces food intake in fasted apo AIV knockout (KO) mice as effectively as in fasted wild-type (WT) mice. Food intake was monitored by the DietMax food system. Apo AIV KO mice had significantly reduced 30-min food intake following all doses of CCK-8, whereas WT mice had reduced food intake only at doses of 3 μg/kg and above. Post hoc analysis revealed that the reduction of 10-min and 30-min food intake elicited by each dose of CCK-8 was significantly larger in the apo AIV KO mice than in the WT mice. Peripheral CCK 1 receptor (CCK1R) gene expression (mRNA) in the duodenum and gallbladder of the fasted apo AIV KO mice was comparable to that in WT mice. In contrast, CCK1R mRNA in nodose ganglia of the apo AIV KO mice was upregulated relative to WT animals. Similarly, upregulated CCK1R gene expression was found in the brain stem of apo AIV KO mice by in situ hybridization. Although it is possible that the increased satiating potency of CCK in apo AIV KO mice is mediated by upregulation of CCK 1R in the nodose ganglia and nucleus tractus solitarius, additional experiments are required to confirm such a mechanism.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xandra Pereiro ◽  
Roberto Fernández ◽  
Gabriel Barreda-Gómez ◽  
Noelia Ruzafa ◽  
Arantxa Acera ◽  
...  

AbstractIn order to better understand retinal physiology, alterations to which underlie some ocular diseases, we set out to establish the lipid signature of two fundamental cell types in the retina, Müller Glia and Retinal Ganglion Cells (RGCs). Moreover, we compared the lipid signature of these cells in sections (in situ), as well as after culturing the cells and isolating their cell membranes (in vitro). The lipidome of Müller glia and RGCs was analyzed in porcine retinal sections using Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS). Isolated membranes, as well as whole cells from primary cell cultures of RGCs and Müller glia, were printed onto glass slides using a non-contact microarrayer (Nano Plotter), and a LTQ-Orbitrap XL analyzer was used to scan the samples in negative ion mode, thereafter identifying the RGCs and Müller cells immunohistochemically. The spectra acquired were aligned and normalized against the total ion current, and a statistical analysis was carried out to select the lipids specific to each cell type in the retinal sections and microarrays. The peaks of interest were identified by MS/MS analysis. A cluster analysis of the MS spectra obtained from the retinal sections identified regions containing RGCs and Müller glia, as confirmed by immunohistochemistry in the same sections. The relative density of certain lipids differed significantly (p-value ≤ 0.05) between the areas containing Müller glia and RGCs. Likewise, different densities of lipids were evident between the RGC and Müller glia cultures in vitro. Finally, a comparative analysis of the lipid profiles in the retinal sections and microarrays identified six peaks that corresponded to a collection of 10 lipids characteristic of retinal cells. These lipids were identified by MS/MS. The analyses performed on the RGC layer of the retina, on RGCs in culture and using cell membrane microarrays of RGCs indicate that the lipid composition of the retina detected in sections is preserved in primary cell cultures. Specific lipid species were found in RGCs and Müller glia, allowing both cell types to be identified by a lipid fingerprint. Further studies into these specific lipids and of their behavior in pathological conditions may well help identify novel therapeutic targets for ocular diseases.


Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 3686-3692 ◽  
Author(s):  
Jeremy T. Smith ◽  
Matthew J. Cunningham ◽  
Emilie F. Rissman ◽  
Donald K Clifton ◽  
Robert A. Steiner

The Kiss1 gene encodes a family of neuropeptides called kisspeptins, which activate the receptor G protein-coupled receptor-54 and play a role in the neuroendocrine regulation of GnRH secretion. We examined whether estradiol (E2) regulates KiSS-1 in the forebrain of the female mouse by comparing KiSS-1 mRNA expression among groups of ovary-intact (diestrus), ovariectomized (OVX), and OVX plus E2-treated mice. In the arcuate nucleus (Arc), KiSS-1 expression increased after ovariectomy and decreased with E2 treatment. Conversely, in the anteroventral periventricular nucleus (AVPV), KiSS-1 expression was reduced after ovariectomy and increased with E2 treatment. To determine whether the effects of E2 on KiSS-1 are mediated through estrogen receptor (ER)α or ERβ, we evaluated the effects of E2 in OVX mice that lacked functional ERα or ERβ. In OVX mice that lacked functional ERα, KiSS-1 mRNA did not respond to E2 in either the Arc or AVPV, suggesting that ERα is essential for mediating the inhibitory and stimulatory effects of E2. In contrast, KiSS-1 mRNA in OVX mice that lacked functional ERβ responded to E2 exactly as wild-type animals. Double-label in situ hybridization revealed that virtually all KiSS-1-expressing neurons in the Arc and AVPV coexpress ERα, suggesting that the effects of E2 are mediated directly through KiSS-1 neurons. We conclude that KiSS-1 neurons in the Arc, which are inhibited by E2, may play a role in the negative feedback regulation of GnRH secretion, whereas KiSS-1 neurons in the AVPV, which are stimulated by E2, may participate in the positive feedback regulation of GnRH secretion.


Sign in / Sign up

Export Citation Format

Share Document