scholarly journals Glucokinase Regulates Reproductive Function, Glucocorticoid Secretion, Food Intake, and Hypothalamic Gene Expression

Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1928-1932 ◽  
Author(s):  
Xue-jun Yang ◽  
Jason Mastaitis ◽  
Tooru Mizuno ◽  
Charles V. Mobbs
2020 ◽  
Vol 20 (3) ◽  
pp. 446-452
Author(s):  
Seyed S. Mortazavi-Jahromi ◽  
Shahab Alizadeh ◽  
Mohammad H. Javanbakht ◽  
Abbas Mirshafiey

Background: This study aimed to investigate the effects of guluronic acid (G2013) on blood sugar, insulin, and gene expression profile of oxLDL receptors (SR-A, CD36, LOX-1, and CD68) in the experimental model of diabetes. Methods: 18 Sprague Dawley rats were randomly assigned to three groups of healthy control, diabetic control, and G2013 group. Diabetes was induced through intraperitoneal (IP) injection of 60 mg/kg streptozotocin. The subjects were IP treated with 25 mg/kg of G2013 per day for 28 days. The body weight, food intake, fasting blood glucose and insulin were measured. In addition, the expression of mentioned genes was investigated through quantitative real-time PCR. Results: The data showed that the final weight increased significantly in the G2013-treated subjects compared to the diabetic control (p < 0.05). The results indicated that final food intake significantly reduced in the G2013-treated subjects compared to the diabetic control (p < 0.05). The study findings also suggested that the final fasting blood glucose significantly reduced in the G2013-treated group, whereas the final fasting serum insulin level significantly increased in this group compared to the diabetic control (p < 0.05). Moreover, the gene expression levels of SR-A, CD36, LOX-1, and CD68 in the G2013 group significantly reduced compared to the diabetic control (p < 0.05). Conclusion: This study showed that G2013, could reduce blood glucose and increase insulin levels and reduce the gene expression level of oxLDL receptors. In addition, it may probably play an important role in reducing the severity of diabetes-induced inflammatory symptoms.


BioFactors ◽  
2004 ◽  
Vol 21 (1-4) ◽  
pp. 15-18 ◽  
Author(s):  
Ichiro Matsumoto ◽  
Shugo Nakamura ◽  
Yasufumi Emori ◽  
Soichi Arai ◽  
Keiko Abe

2019 ◽  
Vol 67 ◽  
pp. 11-20
Author(s):  
Betty R. McConn ◽  
Anna Koskinen ◽  
D. Michael Denbow ◽  
Elizabeth R. Gilbert ◽  
Paul B. Siegel ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3071 ◽  
Author(s):  
Giustino Orlando ◽  
Sheila Leone ◽  
Claudio Ferrante ◽  
Annalisa Chiavaroli ◽  
Adriano Mollica ◽  
...  

Besides its role as key regulator in gonadotropin releasing hormone secretion, reproductive function, and puberty onset, kisspeptin has been proposed to act as a bridge between energy homeostasis and reproduction. In the present study, to characterize the role of hypothalamic kisspeptin as metabolic regulator, we evaluated the effects of kisspeptin-10 on neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF) gene expression and the extracellular dopamine (DA), norepinephrine (NE), serotonin (5-hydroxytriptamine, 5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIIA) concentrations in rat hypothalamic (Hypo-E22) cells. Our study showed that kisspeptin-10 in the concentration range 1 nM–10 μM was well tolerated by the Hypo-E22 cell line. Moreover, kisspeptin-10 (100 nM–10 μM) concentration independently increased the gene expression of NPY while BDNF was inhibited only at the concentration of 10 μM. Finally, kisspeptin-10 decreased 5-HT and DA, leaving unaffected NE levels. The inhibitory effect on DA and 5-HT is consistent with the increased peptide-induced DOPAC/DA and 5-HIIA/5-HT ratios. In conclusion, our current findings suggesting the increased NPY together with decreased BDNF and 5-HT activity following kisspeptin-10 would be consistent with a possible orexigenic effect induced by the peptide.


2006 ◽  
Vol 290 (6) ◽  
pp. R1565-R1569 ◽  
Author(s):  
Kimberly P. Kinzig ◽  
Karen A. Scott ◽  
Jayson Hyun ◽  
Sheng Bi ◽  
Timothy H. Moran

The gut peptide ghrelin has been shown to stimulate food intake after both peripheral and central administration, and the hypothalamic arcuate nucleus has been proposed to be the major site for mediating this feeding stimulatory action. Ghrelin receptors are widely distributed in the brain, and hindbrain ghrelin administration has been shown to potently stimulate feeding, suggesting that there may be other sites for ghrelin action. In the present study, we have further assessed potential sites for ghrelin action by comparing the ability of lateral and fourth ventricular ghrelin administration to stimulate food intake and alter patterns of hypothalamic gene expression. Ghrelin (0.32, 1, or 3.2 nmol) in the lateral or fourth ventricle significantly increased food intake in the first 4 h after injection, with no ventricle-dependent differences in degree or time course of hyperphagia. One nanomole of ghrelin into either the lateral or fourth ventricle resulted in similar increases in arcuate nucleus neuropeptide Y mRNA expression. Expression levels of agouti-related peptide or proopiomelanocortin mRNA were not affected by ghrelin administration. These data demonstrate that ghrelin can affect food intake and hypothalamic gene expression through interactions at multiple brain sites.


2007 ◽  
Vol 292 (1) ◽  
pp. R242-R252 ◽  
Author(s):  
Chantacha Anukulkitch ◽  
Alexandra Rao ◽  
Frank R. Dunshea ◽  
Dominique Blache ◽  
Gerald A. Lincoln ◽  
...  

We studied the effects of photoperiod on metabolic profiles, adiposity, and gene expression of hypothalamic appetite-regulating peptides in gonad-intact and castrated Soay rams. Groups of five to six animals were studied 6, 18, or 30 wk after switching from long photoperiod (LP: 16 h of light) to short photoperiod (SP: 8 h of light). Reproductive and metabolic indexes were measured in blood plasma. Expression of neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor (ObRb) in the arcuate nucleus was measured using in situ hybridization. Testosterone levels of intact animals were low under LP, increased to a peak at 16 wk under SP, and then declined. Voluntary food intake (VFI) was high under LP in both intact and castrated animals, decreased to a nadir at 12–16 wk under SP, and then recovered, but only in intact rams as the reproductive axis became photorefractory to SP. NPY gene expression varied positively and POMC expression varied negatively with the cycle in VFI, with differences between intact and castrate rams in the refractory phase. ObRb expression decreased under SP, unrelated to changes in VFI. Visceral fat weight also varied between the intact and castrated animals across the cycle. We conclude that 1) photoperiodic changes in VFI reflect changes in NPY and POMC gene expression, 2) changes in ObRb gene expression are not necessarily determinants of changes in VFI, 3) gonadal status affects the pattern of VFI that changes with photoperiod, and 4) in the absence of gonadal factors, animals can eat less but gain adiposity.


Sign in / Sign up

Export Citation Format

Share Document