Lateral ventricular ghrelin and fourth ventricular ghrelin induce similar increases in food intake and patterns of hypothalamic gene expression

2006 ◽  
Vol 290 (6) ◽  
pp. R1565-R1569 ◽  
Author(s):  
Kimberly P. Kinzig ◽  
Karen A. Scott ◽  
Jayson Hyun ◽  
Sheng Bi ◽  
Timothy H. Moran

The gut peptide ghrelin has been shown to stimulate food intake after both peripheral and central administration, and the hypothalamic arcuate nucleus has been proposed to be the major site for mediating this feeding stimulatory action. Ghrelin receptors are widely distributed in the brain, and hindbrain ghrelin administration has been shown to potently stimulate feeding, suggesting that there may be other sites for ghrelin action. In the present study, we have further assessed potential sites for ghrelin action by comparing the ability of lateral and fourth ventricular ghrelin administration to stimulate food intake and alter patterns of hypothalamic gene expression. Ghrelin (0.32, 1, or 3.2 nmol) in the lateral or fourth ventricle significantly increased food intake in the first 4 h after injection, with no ventricle-dependent differences in degree or time course of hyperphagia. One nanomole of ghrelin into either the lateral or fourth ventricle resulted in similar increases in arcuate nucleus neuropeptide Y mRNA expression. Expression levels of agouti-related peptide or proopiomelanocortin mRNA were not affected by ghrelin administration. These data demonstrate that ghrelin can affect food intake and hypothalamic gene expression through interactions at multiple brain sites.

2017 ◽  
Vol 13 (6) ◽  
pp. 586-601 ◽  
Author(s):  
Gary D. Miller

Understanding body weight regulation will aid in the development of new strategies to combat obesity. This review examines energy homeostasis and food intake behaviors, specifically with regards to hormones, peptides, and neurotransmitters in the periphery and central nervous system, and their potential role in obesity. Dysfunction in feeding signals by the brain is a factor in obesity. The hypothalamic (arcuate nucleus) and brainstem (nucleus tractus solitaris) areas integrate behavioral, endocrine, and autonomic responses via afferent and efferent pathways from and to the brainstem and peripheral organs. Neurons present in the arcuate nucleus express pro-opiomelanocortin, Neuropeptide Y, and Agouti Related Peptide, with the former involved in lowering food intake, and the latter two acutely increasing feeding behaviors. Action of peripheral hormones from the gut, pancreas, adipose, and liver are also involved in energy homeostasis. Vagal afferent neurons are also important in regulating energy homeostasis. Peripheral signals respond to the level of stored and currently available fuel. By studying their actions, new agents maybe developed that disable orexigenic responses and enhance anorexigenic signals. Although there are relatively few medications currently available for obesity treatment, a number of agents are in development that work through these pathways.


Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5120-5127 ◽  
Author(s):  
Nicola M. Neary ◽  
Caroline J. Small ◽  
Maralyn R. Druce ◽  
Adrian J. Park ◽  
Sandra M. Ellis ◽  
...  

Peptide YY (PYY) and glucagon like peptide (GLP)-1 are cosecreted from intestinal L cells, and plasma levels of both hormones rise after a meal. Peripheral administration of PYY3–36 and GLP-17–36 inhibit food intake when administered alone. However, their combined effects on appetite are unknown. We studied the effects of peripheral coadministration of PYY3–36 with GLP-17–36 in rodents and man. Whereas high-dose PYY3–36 (100 nmol/kg) and high-dose GLP-17–36 (100 nmol/kg) inhibited feeding individually, their combination led to significantly greater feeding inhibition. Additive inhibition of feeding was also observed in the genetic obese models, ob/ob and db/db mice. At low doses of PYY3–36 (1 nmol/kg) and GLP-17–36 (10 nmol/kg), which alone had no effect on food intake, coadministration led to significant reduction in food intake. To investigate potential mechanisms, c-fos immunoreactivity was quantified in the hypothalamus and brain stem. In the hypothalamic arcuate nucleus, no changes were observed after low-dose PYY3–36 or GLP-17–36 individually, but there were significantly more fos-positive neurons after coadministration. In contrast, there was no evidence of additive fos-stimulation in the brain stem. Finally, we coadministered PYY3–36 and GLP-17–36 in man. Ten lean fasted volunteers received 120-min infusions of saline, GLP-17–36 (0.4 pmol/kg·min), PYY3–36 (0.4 pmol/kg·min), and PYY3–36 (0.4 pmol/kg·min) + GLP-17–36 (0.4 pmol/kg·min) on four separate days. Energy intake from a buffet meal after combined PYY3–36 + GLP-17–36 treatment was reduced by 27% and was significantly lower than that after either treatment alone. Thus, PYY3–36 and GLP-17–36, cosecreted after a meal, may inhibit food intake additively.


2011 ◽  
Vol 301 (2) ◽  
pp. R448-R455 ◽  
Author(s):  
Jason Wright ◽  
Carlos Campos ◽  
Thiebaut Herzog ◽  
Mihai Covasa ◽  
Krzysztof Czaja ◽  
...  

Intraperitoneal injection of CCK reduces food intake and triggers a behavioral pattern similar to natural satiation. Reduction of food intake by CCK is mediated by vagal afferents that innervate the stomach and small intestine. These afferents synapse in the hindbrain nucleus of the solitary tract (NTS) where gastrointestinal satiation signals are processed. Previously, we demonstrated that intraperitoneal (IP) administration of either competitive or noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists attenuates reduction of food intake by CCK. However, because vagal afferents themselves express NMDA receptors at both central and peripheral endings, our results did not speak to the question of whether NMDA receptors in the brain play an essential role in reduction of feeding by CCK. We hypothesized that activation of NMDA receptors in the NTS is necessary for reduction of food intake by CCK. To test this hypothesis, we measured food intake following IP CCK, subsequent to NMDA receptor antagonist injections into the fourth ventricle, directly into the NTS or subcutaneously. We found that either fourth-ventricle or NTS injection of the noncompetitive NMDA receptor antagonist MK-801 was sufficient to inhibit CCK-induced reduction of feeding, while the same antagonist doses injected subcutaneously did not. Similarly fourth ventricle injection of d-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphoric acid (d-CPPene), a competitive NMDA receptor antagonist, also blocked reduction of food intake following IP CCK. Finally, d-CPPene injected into the fourth ventricle attenuated CCK-induced expression of nuclear c-Fos immunoreactivity in the dorsal vagal complex. We conclude that activation of NMDA receptors in the hindbrain is necessary for the reduction of food intake by CCK. Hindbrain NMDA receptors could comprise a critical avenue for control and modulation of satiation signals to influence food intake and energy balance.


2007 ◽  
Vol 292 (1) ◽  
pp. R242-R252 ◽  
Author(s):  
Chantacha Anukulkitch ◽  
Alexandra Rao ◽  
Frank R. Dunshea ◽  
Dominique Blache ◽  
Gerald A. Lincoln ◽  
...  

We studied the effects of photoperiod on metabolic profiles, adiposity, and gene expression of hypothalamic appetite-regulating peptides in gonad-intact and castrated Soay rams. Groups of five to six animals were studied 6, 18, or 30 wk after switching from long photoperiod (LP: 16 h of light) to short photoperiod (SP: 8 h of light). Reproductive and metabolic indexes were measured in blood plasma. Expression of neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor (ObRb) in the arcuate nucleus was measured using in situ hybridization. Testosterone levels of intact animals were low under LP, increased to a peak at 16 wk under SP, and then declined. Voluntary food intake (VFI) was high under LP in both intact and castrated animals, decreased to a nadir at 12–16 wk under SP, and then recovered, but only in intact rams as the reproductive axis became photorefractory to SP. NPY gene expression varied positively and POMC expression varied negatively with the cycle in VFI, with differences between intact and castrate rams in the refractory phase. ObRb expression decreased under SP, unrelated to changes in VFI. Visceral fat weight also varied between the intact and castrated animals across the cycle. We conclude that 1) photoperiodic changes in VFI reflect changes in NPY and POMC gene expression, 2) changes in ObRb gene expression are not necessarily determinants of changes in VFI, 3) gonadal status affects the pattern of VFI that changes with photoperiod, and 4) in the absence of gonadal factors, animals can eat less but gain adiposity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pernille Barkholt ◽  
Kristoffer T. G. Rigbolt ◽  
Mechthilde Falkenhahn ◽  
Thomas Hübschle ◽  
Uwe Schwahn ◽  
...  

Abstract The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.


2013 ◽  
Vol 52 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Yoshihiro Suzuki ◽  
Keiko Nakahara ◽  
Keisuke Maruyama ◽  
Rieko Okame ◽  
Takuya Ensho ◽  
...  

The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3101-3109 ◽  
Author(s):  
Andrea Peier ◽  
Jennifer Kosinski ◽  
Kimberly Cox-York ◽  
Ying Qian ◽  
Kunal Desai ◽  
...  

Neuromedin U (NMU) and neuromedin S (NMS) are structurally related neuropeptides that have been reported to modulate energy homeostasis. Pharmacological data have shown that NMU and NMS inhibit food intake when administered centrally and that NMU increases energy expenditure. Additionally, NMU-deficient mice develop obesity, whereas transgenic mice overexpressing NMU are lean and hypophagic. Two high-affinity NMU/NMS receptors, NMUR1 and NMUR2, have been identified. NMUR1 is predominantly expressed in the periphery, whereas NMUR2 is predominantly expressed in the brain, suggesting that the effects of centrally administered NMU and NMS are mediated by NMUR2. To evaluate the role of NMUR2 in the regulation of energy homeostasis, we characterized NMUR2-deficient (Nmur2−/−) mice. Nmur2−/− mice exhibited a modest resistance to diet-induced obesity that was at least in part due to reduced food intake. Acute central administration of NMU and NMS reduced food intake in wild-type but not in Nmur2−/− mice. The effects on activity and core temperature induced by centrally administered NMU were also absent in Nmur2−/− mice. Moreover, chronic central administration of NMU and NMS evoked significant reductions in body weight and sustained reductions in food intake in mice. In contrast, Nmur2−/− mice were largely resistant to these effects. Collectively, these data demonstrate that the anorectic and weight-reducing actions of centrally administered NMU and NMS are mediated predominantly by NMUR2, suggesting that NMUR2-selective agonists may be useful for the treatment of obesity.


2007 ◽  
Vol 292 (1) ◽  
pp. R575-R585 ◽  
Author(s):  
Éva Szentirmai ◽  
Levente Kapás ◽  
James M. Krueger

Ghrelin, a gut-brain peptide, is best known for its role in the stimulation of feeding and growth hormone release. In the brain, orexin, neuropeptide Y (NPY), and ghrelin are parts of a food intake regulatory circuit. Orexin and NPY are also implicated in maintaining wakefulness. Previous experiments in our laboratory revealed that intracerebroventricular injections of ghrelin induce wakefulness in rats. To further elucidate the possible role of ghrelin in the regulation of arousal, we studied the effects of microinjections of ghrelin into hypothalamic sites, which are implicated in the regulation of feeding and sleep, such as the lateral hypothalamus (LH), medial preoptic area (MPA), and paraventricular nucleus (PVN) on sleep in rats. Sleep responses, motor activity, and food intake after central administration of 0.04, 0.2, or 1 μg (12, 60, or 300 pmol) ghrelin were recorded. Microinjections of ghrelin into the LH had strong wakefulness-promoting effects lasting for 2 h. Wakefulness was also stimulated by ghrelin injection into the MPA and PVN; the effects were confined to the first hour after the injection. Ghrelin's non-rapid-eye-movement sleep-suppressive effect was accompanied by attenuation in the electroencephalographic (EEG) slow-wave activity and changes in the EEG power spectrum. Food consumption was significantly stimulated after microinjections of ghrelin into each hypothalamic site. Together, these results are consistent with the hypothesis that forebrain ghrelinergic mechanisms play a role in the regulation of vigilance, possibly through activating the components of the food intake- and arousal-promoting network formed by orexin and NPY.


2017 ◽  
Vol 59 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Dominique H Eghlidi ◽  
Vasilios T Garyfallou ◽  
Steven G Kohama ◽  
Henryk F Urbanski

The hypothalamic arcuate nucleus (ARC) represents a major component of the neuroendocrine reproductive axis and plays an important role in controlling the onset of puberty as well as age-associated reproductive senescence. Although significant gene expression changes have been observed in the ARC during sexual maturation, it is unclear what changes occur during aging, especially in males. Therefore, in the present study, we profiled the expression of reproduction-related genes in the ARC of young and old male rhesus macaques, as well as old males that had received 6 months of hormone supplementation (HS) in the form of daily testosterone and dehydroepiandrosterone; we also compared morning vs night ARC gene expression in the old males. Using Affymetrix gene microarrays, we found little evidence for age-associated expression changes for genes associated with the neuroendocrine reproductive axis, whereas using qRT-PCR, we detected a similar age-associated decrease in PGR (progesterone receptor) that we previously observed in postmenopausal females. We also detected a sex-steroid-dependent and age-associated decrease in androgen receptor (AR) expression, with highest AR levels being expressed at night (i.e., coinciding with the natural peak in daily testosterone secretion). Finally, unlike previous observations made in females, we did not find a significant age-associated increase in KISS1 (Kisspeptin) or TAC3 (Neurokinin B) expression in the ARC of males, most likely because the attenuation of circulating sex-steroid levels in the males was much less than that in postmenopausal females. Taken together, the data highlight some similarities and differences in ARC gene expression between aged male and female nonhuman primates.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Damien Lanfray ◽  
Alexandre Caron ◽  
Marie-Claude Roy ◽  
Mathieu Laplante ◽  
Fabrice Morin ◽  
...  

Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway.


Sign in / Sign up

Export Citation Format

Share Document