scholarly journals Effects of Kisspeptin-10 on Hypothalamic Neuropeptides and Neurotransmitters Involved in Appetite Control

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3071 ◽  
Author(s):  
Giustino Orlando ◽  
Sheila Leone ◽  
Claudio Ferrante ◽  
Annalisa Chiavaroli ◽  
Adriano Mollica ◽  
...  

Besides its role as key regulator in gonadotropin releasing hormone secretion, reproductive function, and puberty onset, kisspeptin has been proposed to act as a bridge between energy homeostasis and reproduction. In the present study, to characterize the role of hypothalamic kisspeptin as metabolic regulator, we evaluated the effects of kisspeptin-10 on neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF) gene expression and the extracellular dopamine (DA), norepinephrine (NE), serotonin (5-hydroxytriptamine, 5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIIA) concentrations in rat hypothalamic (Hypo-E22) cells. Our study showed that kisspeptin-10 in the concentration range 1 nM–10 μM was well tolerated by the Hypo-E22 cell line. Moreover, kisspeptin-10 (100 nM–10 μM) concentration independently increased the gene expression of NPY while BDNF was inhibited only at the concentration of 10 μM. Finally, kisspeptin-10 decreased 5-HT and DA, leaving unaffected NE levels. The inhibitory effect on DA and 5-HT is consistent with the increased peptide-induced DOPAC/DA and 5-HIIA/5-HT ratios. In conclusion, our current findings suggesting the increased NPY together with decreased BDNF and 5-HT activity following kisspeptin-10 would be consistent with a possible orexigenic effect induced by the peptide.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jesús Devesa

The classic concept of how pituitary GH is regulated by somatostatin and GHRH has changed in recent years, following the discovery of peripheral hormones involved in the regulation of energy homeostasis and mineral homeostasis. These hormones are ghrelin, nesfatins, and klotho. Ghrelin is an orexigenic hormone, released primarily by the gastric mucosa, although it is widely expressed in many different tissues, including the central nervous system and the pituitary. To be active, ghrelin must bind to an n-octanoyl group (n = 8, generally) on serine 3, forming acyl ghrelin which can then bind and activate a G-protein-coupled receptor leading to phospholipase C activation that induces the formation of inositol 1,4,5-triphosphate and diacylglycerol that produce an increase in cytosolic calcium that allows the release of GH. In addition to its direct action on somatotrophs, ghrelin co-localizes with GHRH in several neurons, facilitating its release by inhibiting somatostatin, and acts synergistically with GHRH stimulating the synthesis and secretion of pituitary GH. Gastric ghrelin production declines with age, as does GH. Klotho is an anti-aging agent, produced mainly in the kidneys, whose soluble circulating form directly induces GH secretion through the activation of ERK1/2 and inhibits the inhibitory effect that IGF-I exerts on GH. Children and adults with untreated GH-deficiency show reduced plasma levels of klotho, but treatment with GH restores them to normal values. Deletions or mutations of the Klotho gene affect GH production. Nesfatins 1 and 2 are satiety hormones, they inhibit food intake. They have been found in GH3 cell cultures where they significantly reduce the expression of gh mRNA and that of pituitary-specific positive transcription factor 1, consequently acting as inhibitors of GH production. This is a consequence of the down-regulation of the cAMP/PKA/CREB signaling pathway. Interestingly, nesfatins eliminate the strong positive effect that ghrelin has on GH synthesis and secretion. Throughout this review, we will attempt to broadly analyze the role of these hormones in the complex world of GH regulation, a world in which these hormones already play a very important role.


1982 ◽  
Vol 92 (1) ◽  
pp. 37-42 ◽  
Author(s):  
H. M. A. MEIJS-ROELOFS ◽  
P. KRAMER ◽  
L. GRIBLING-HEGGE

A possible role of 5α-androstane-3α,17β-diol (3α-androstanediol) in the control of FSH secretion was studied at various ages in ovariectomized rats. In the rat strain used, vaginal opening, coincident with first ovulation, generally occurs between 37 and 42 days of age. If 3α-androstanediol alone was given as an ovarian substitute, an inhibitory effect on FSH release was evident with all three doses tested (50, 100, 300 μg/100 g body wt) between 13 and 30 days of age; at 33–35 days of age only the 300 μg dose caused some inhibition of FSH release. Results were more complex if 3α-androstanediol was given in combined treatment with oestradiol and progesterone. Given with progesterone, 3α-androstanediol showed a synergistic inhibitory action on FSH release between 20 and 30 days of age. However, when 3α-androstanediol was combined with oestradiol a clear decrease in effect, as compared to the effect of oestradiol alone, was found between 20 and 30 days of age. Also the effect of combined oestradiol and progesterone treatment was greater than the effect of combined treatment with oestradiol, progesterone and 3α-androstanediol. At all ages after day 20 none of the steroid combinations tested was capable of maintaining FSH levels in ovariectomized rats similar to those in intact rats. It is concluded that 3α-androstanediol might play a role in the control of FSH secretion in the immature rat, but after day 20 the potentially inhibitory action of 3α-androstanediol on FSH secretion is limited in the presence of oestradiol.


2005 ◽  
Vol 94 (1) ◽  
pp. 612-621 ◽  
Author(s):  
Robert A. Rose ◽  
Madhu B. Anand-Srivastava ◽  
Wayne R. Giles ◽  
Jaideep S. Bains

Magnocellular neurosecretory cells (MNCs), of the paraventricular and supraoptic nuclei of the hypothalamus, secrete the hormones vasopressin and oxytocin. As a result, they have an essential role in fundamental physiological responses including regulation of blood volume and fluid homeostasis. C-type natriuretic peptide (CNP) is present at high levels in the hypothalamus. Although CNP is known to decrease hormone secretion from MNCs, no studies have examined the role of the natriuretic peptide C receptor (NPR-C) in these neurons. In this study, whole cell recordings from acutely isolated MNCs, and MNCs in a coronal slice preparation, show that CNP (2 × 10−8 M) and the selective NPR-C agonist, cANF (2 × 10−8 M), significantly inhibit L-type Ca2+ current ( ICa(L)) by ∼50%. This effect on ICa(L) is mimicked by dialyzing a Gi-activator peptide (10−7 M) into these cells, implicating a role for the inhibitory G protein, Gi. These NPR-C–mediated effects were specific to ICa(L). T-type Ca2+ channels were unaffected by CNP. Current-clamp experiments revealed the ability of CNP, acting via the NPR-C receptor, to decrease (∼25%) the number of action potentials elicited during a 500 ms depolarizing stimulus. Analysis of action potential duration revealed that CNP and cANF significantly decreased 50% repolarization time (APD50) in MNCs. In summary, our findings show that CNP has a potent and selective inhibitory effect on ICa(L) and on excitability in MNCs that is mediated by the NPR-C receptor. These data represent the first electrophysiological evidence of a functional role for the NPR-C receptor in the mammalian hypothalamus.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1959-1971 ◽  
Author(s):  
D. García-Galiano ◽  
R. Pineda ◽  
T. Ilhan ◽  
J. M. Castellano ◽  
F. Ruiz-Pino ◽  
...  

Nesfatin-1, product of the precursor NEFA/nucleobindin2 (NUCB2), was initially identified as anorectic hypothalamic neuropeptide, acting in a leptin-independent manner. In addition to its central role in the control of energy homeostasis, evidence has mounted recently that nesfatin-1 is also produced in peripheral metabolic tissues, such as pancreas, adipose, and gut. Moreover, nesfatin-1 has been shown to participate in the control of body functions gated by whole-body energy homeostasis, including puberty onset. Yet, whether, as is the case for other metabolic neuropeptides, NUCB2/nesfatin-1 participates in the direct control of gonadal function remains unexplored. We document here for the first time the expression of NUCB2 mRNA in rat, mouse, and human testes, where NUCB2/nesfatin-1 protein was identified in interstitial mature Leydig cells. Yet in rats, NUCB2/nesfatin-1 became expressed in Sertoli cells upon Leydig cell elimination and was also detected in Leydig cell progenitors. Although NUCB2 mRNA levels did not overtly change in rat testis during pubertal maturation and after short-term fasting, NUCB2/nesfatin-1 content significantly increased along the puberty-to-adult transition and was markedly suppressed after fasting. In addition, testicular NUCB2/nesfatin-1 expression was up-regulated by pituitary LH, because hypophysectomy decreased, whereas human choriogonadotropin (super-agonist of LH receptors) replacement enhanced, NUCB2/nesfatin-1 mRNA and peptide levels. Finally, nesfatin-1 increased human choriogonadotropin-stimulated testosterone secretion by rat testicular explants ex vivo. Our data are the first to disclose the presence and functional role of NUCB2/nesfatin-1 in the testis, where its expression is regulated by developmental, metabolic, and hormonal cues as well as by Leydig cell-derived factors. Our observations expand the reproductive dimension of nesfatin-1, which may operate directly at the testicular level to link energy homeostasis, puberty onset, and gonadal function.


2012 ◽  
Vol 12 (1) ◽  
pp. 15-23
Author(s):  
Maria Romerowicz-Misielak ◽  
Marek Koziorowski

The Gonadotropins Subunits, GNRH and GNRH Receptor Gene Expression and Role of Carbon Monoxide in Seasonal Breeding AnimalsSeasonality in reproduction occurs mainly in wild species and it is the result of natural selection. Signals to start or finish the period of reproductive activity, both environmental and hormonal depend on the neuroendocrine pathway - synthesis and secretion of pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), under the control of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Variable frequency of GnRH pulses is not only the main factor governing primary and preovulatory release of gonadotropins, but it can also play a role in the specific transcriptional activity of gonadotropin subunit genes (LHβ, FSHβ and Cga). However, changes in release of GnRH pulse pattern do not explain the preferential stimulation of the synthesis and secretion of gonadotropins in the annual reproductive cycle. In this regulation also a GnRH independent mechanism participates. It seems that the main factor responsible for the occurrence of the seasonal modulation of reproduction in sheep and other mammals, is significant changes in response of GnRH systems to gonadal steroids. The effect of carbon monoxide on regulation of the hypothalamic-pituitary-gonadal axis has not been studied to date. There is substantial evidence to suggest that it may play a role in the transduction of information on day length. The presence of heme oxygenase-2 in hypothalamic areas important for regulation of pituitary secretory function and in the pituitary itself suggests that carbon monoxide, the product of this enzyme, may participate in the regulation of hormone secretion by the pineal gland.


2006 ◽  
Vol 20 (11) ◽  
pp. 2747-2760 ◽  
Author(s):  
Jamuna Thimmarayappa ◽  
Jinhong Sun ◽  
Laura E. Schultz ◽  
Prapai Dejkhamron ◽  
Chunxia Lu ◽  
...  

Abstract The expression and function of the GH receptor is critical for the actions of pituitary GH in the intact animal. The role of systemic factors in the reduced expression of the GH receptor and consequent GH insensitivity in pathological states such as sepsis, malnutrition, and poorly controlled diabetes mellitus is unclear. In the current study, we demonstrate that saturated (palmitic and myristic; 50 μm) fatty acids (FA) inhibit activity of the promoter of the major (L2) transcript of the GH receptor gene; unsaturated (oleic and linoleic) FA (200 μm) do not alter activity of the promoter. Comparable effects with palmitic acid and the nonmetabolizable analog bromo-palmitic acid, and failure of triacsin C to abrogate palmitic acids effects on GH receptor expression indicate that this effect is due to direct action(s) of FA. Palmitic acid, but not the unsaturated FA linoleic acid, decreased steady-state levels of endogenous L2 mRNA and GHR protein in 3T3-L1 preadipocytes. The effect of FA was localized to two cis elements located approximately 600 bp apart on the L2 promoter. EMSA and chromatin immunoprecipitation assays established that both these cis elements bind the Krüppel-type zinc finger transcription factor, ZBP-89. Ectopic expression of ZBP-89 amplified the inhibitory effect of FA on L2 promoter activity and on steady-state levels of endogenous L2 mRNA in 3T3-L1 preadipocytes. Mutational analyses of the two ZBP-89 binding sites revealed that both the sites are essential for palmitic acid’s inhibitory effect on the L2 promoter and for the enhancing effect of ZBP-89 on palmitic acid-induced inhibition of the L2 promoter. Our results establish a molecular basis for FA-induced inhibition of GH receptor gene expression in the pathogenesis of acquired GH insensitivity in pathological states such as poorly controlled diabetes mellitus and small for gestational age.


Reproduction ◽  
2019 ◽  
Vol 158 (5) ◽  
pp. 429-440
Author(s):  
Yingying Han ◽  
Shuhao Zhang ◽  
Haotong Zhuang ◽  
Sijie Fan ◽  
Jiayi Yang ◽  
...  

Adiponectin (ADIPOQ, encoded by Adipoq) is an important white adipose-derived adipokine linked to energy homeostasis and reproductive function. This study aims to reveal the expression and role of the adiponectin system in the ovaries under acute malnutrition. In this study, 48-h food deprivation significantly inhibited ovarian growth by suppressing cell proliferation and inducing cell apoptosis in the ovaries of gonadotrophin-primed immature mice. It was also accompanied by significantly decelerated basic metabolism (glucose, triacylglycerol and cholesterol), varied steroid hormones (follicle-stimulating hormone, luteinizing hormone and estradiol) and vanishment of the peri-ovarian fat. It is noteworthy that after acute fasting, the adiponectin levels in ovaries rather than in blood were significantly elevated. Immunohistochemical study demonstrated that adiponectin and its receptors (ADIPOR1 and ADIPOR2) primarily appeared in ovarian somatic and/or germ cells, and their protein expressions were upregulated in the ovaries from fasted mice. Further in vitro study verified that ADIPOR1/2 agonist obviously inhibited follicle-stimulating hormone-induced oocyte meiotic resumption, while the antagonist significantly enhanced the percentage of oocyte maturation in the absence of follicle-stimulating hormone. Furthermore, the build up of peri-ovarian fat under physiological status in mice showed a positive correlation with both the hypertrophy of adipocytes and growth of ovaries. Taken together, these findings indicate that the upregulation of the adiponectin system disturbs the normal female reproductive function under the malnutrition status, and it may be associated with the loss of peri-ovarian fat depots.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jissele A. Verdinez ◽  
Julien A. Sebag

Prokineticin receptors are GPCRs involved in several physiological processes including the regulation of energy homeostasis, nociception, and reproductive function. PKRs are inhibited by the endogenous accessory protein MRAP2 which prevents them from trafficking to the plasma membrane. Very little is known about the importance of post-translational modification of PKRs and their role in receptor trafficking and signaling. Here we identify 2 N-linked glycosylation sites within the N-terminal region of PKR2 and demonstrate that glycosylation of PKR2 at position 27 is important for its plasma membrane localization and signaling. Additionally, we show that glycosylation at position 7 results in a decrease in PKR2 signaling through Gαs without impairing Gαq/11 signaling.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1755-1755 ◽  
Author(s):  
Joanne Manns ◽  
Mario Rico ◽  
Leonard L. Mason ◽  
De La Cadena A. Raul

Abstract TSP1 has the ability to bind to human fibroblasts, to form a complex with coagulation factor V/Va (Thrombosis Research 116:533, 2005), to promote thrombin generation on the surface of a monocytic cell line and to neutralize tissue factor pathway inhibitor (TFPI) (J Biol Chem275:31715, 2000). Disruption of TSP1 binding to neutrophils was associated with beneficial effects in an experimental animal model of inflammation, in part, by down regulating CTGF gene and protein expression (Arthritis Rheum54:2415, 2006). CTGF is a novel potent cysteine-rich heparin-binding growth factor and is highly expressed by fibroblasts. CTGF plays a major role in angiogenesis and fibrosis. There is also growing evidence that CTGF may be the downstream autocrine mediator responsible for some of the cellular effects of TGF-beta. Since fibroblasts express tissue factor (TF) on their surface, and purified thrombin and TF-VIIa complex have been shown to up-regulate the gene expression of CTGF (J Biol Chem275:14632, 2000) experiments were conducted to evaluate the ability of HS-68 to support assembly of the prothrombinase complex, TF-FVIIa, thrombin generation and the effect of thrombin generation on CTGF expression. The role of TSP1 in these reactions was assessed as well. Thrombin generation was measured by the chromogenic substrate S-2238. Although the initial rates of the reactions are available we are presenting the end-point values of the reaction expressed in umol/L of pNA released per minute. All reaction mixtures were performed in the presence of 2mM Ca++. When HS-68 cells were preincubated with FVII (5 nM) prior to the addition of activated factor V (FVa, 45nM)), FX (5nM) and prothrombin (FII, 1.4 uM), thrombin was efficiently generated (282 umol/L pNA/min), indicating that FVII was activated by TF expressed by the cell and that the HS-68 cell membrane provided an ideal surface for the reaction to occur. The addition of FII, FV, FVII and FX to the reaction mixtures was an absolute requirement. When the reaction mixture was evaluated in the presence of FII, FV, FVII, FX and TFPI (8nM), there was a 70% reduction in thrombin production (86 umol/L pNA released) confirming the important role of TFPI in regulating the activity of the TF-FVIIa complex. The addition of TSP1 to the reaction mixture containing FII, FV, FVII and FX at concentrations found in plasma during the inflammatory response (20nM) enhanced the production of thrombin (327 umol/L pNA released per min) and neutralized the inhibitory effect of TFPI by 50% (171 umol/L pNA released per min). Therefore, TSP1 promotes thrombin generation by participating in the assembly of the prothrombinase complex on the surface of HS-68 cells and by neutralizing, in part, the inhibitory effect of TFPI on TF-VIIa complex. Finally, thrombin generation on the surface of HS-68 cells was associated with up-regulation of CTGF gene expression from the baseline value by 67% at 1hr and 72% by 2 hrs. In summary, we have identified on human fibroblasts a pathway previously shown to play an important role on human neutrophils and in an experimental model of inflammation. Our laboratory is currently characterizing the binding of TSP1 to this cell line and silencing the gene for TSP1 to test its potential therapeutic benefit in an experimental model of erosive arthritis and to further determine the role of TSP1 in this pathway.


1995 ◽  
Vol 146 (3) ◽  
pp. 543-552 ◽  
Author(s):  
D J Tortonese ◽  
G A Lincoln

Abstract Previous studies have shown that treatment with microimplants of melatonin in the mediobasal hypothalamus (MBH) of sexually inactive Soay rams exposed to long days induces an increase in the secretion of FSH and reactivation of the testicular axis, as normally occurs in response to short days. The current study was conducted to investigate the possible involvement of hypothalamic dopaminergic (DA) systems in this melatonin-induced effect. At 10 weeks under long days, sexually inactive Soay rams were treated in the MBH with micro-implants containing bromocriptine (DA agonist) or sulpiride (DA antagonist), given alone or in combination with melatonin, to establish whether the DA drugs would mimic or negate the effects of melatonin. All micro-implants were inserted bilaterally and left in place for 14 weeks; the study lasted a total of 28 weeks (14 weeks implant period and 14 weeks post-implant period) while the animals remained under long days. The ability of the micro-implants to release bromocriptine and sulpiride for 14 weeks was confirmed by incubating implants in vitro and testing for the presence of the compounds in the incubate using a pituitary cell bioassay. Profiles of FSH, determined in blood samples collected three times weekly, were significantly different among treatments (time × treatment interaction, P<0·001, ANOVA). Melatonin in the MBH induced a marked increase in the concentrations of FSH during the implant period, and a decrease during the post-implant period (P<0·001). Bromocriptine given alone in the MBH induced a decrease in the concentrations of FSH which became statistically different from the control during the post-implant period (P<0·05). Treatment with sulpiride alone also resulted in a suppressive effect during the post-implant period (P<0·01). When given in combination with melatonin, bromocriptine or sulpiride significantly reduced the melatonin-induced increase in the concentrations of FSH observed during the implant period (P<0·001). The results support the view that DA pathways in the MBH play an important role in the inhibitory regulation of gonadotrophin secretion in the ram. The inhibitory effect of bromocriptine is likely to result from the direct activation of the hypothalamic DA receptors linked to GnRH neurones regulating the secretion of FSH. The apparent paradoxical inhibitory effect of sulpiride is thought to be due to enhanced gonadal steroid negative feedback resulting from blockade of the inhibitory DA pathways, as evidenced by significantly increased secretion of testosterone (P<0·05) in the animals receiving sulpiride in combination with melatonin. The observation that DA drugs modified the effects of melatonin in the MBH provides evidence that hypothalamic DA pathways may participate in the mechanism by which melatonin mediates the effects of photoperiod on reproductive function in the ram. Journal of Endocrinology (1995) 146, 543–552


Sign in / Sign up

Export Citation Format

Share Document