scholarly journals A Central Role for Neuronal Adenosine 5′-Monophosphate-Activated Protein Kinase in Cancer-Induced Anorexia

Endocrinology ◽  
2007 ◽  
Vol 148 (11) ◽  
pp. 5220-5229 ◽  
Author(s):  
Eduardo R. Ropelle ◽  
José R. Pauli ◽  
Karina G. Zecchin ◽  
Mirian Ueno ◽  
Cláudio T. de Souza ◽  
...  

The pathogenesis of cancer anorexia is multifactorial and associated with disturbances of the central physiological mechanisms controlling food intake. However, the neurochemical mechanisms responsible for cancer-induced anorexia are unclear. Here we show that chronic infusion of 5-amino-4imidazolecarboxamide-riboside into the third cerebral ventricle and a chronic peripheral injection of 2 deoxy-d-glucose promotes hypothalamic AMP-activated protein kinase (AMPK) activation, increases food intake, and prolongs the survival of anorexic tumor-bearing (TB) rats. In parallel, the pharmacological activation of hypothalamic AMPK in TB animals markedly reduced the hypothalamic production of inducible nitric oxide synthase, IL-1β, and TNF-α and modulated the expression of proopiomelanocortin, a hypothalamic neuropeptide that is involved in the control of energy homeostasis. Furthermore, the daily oral and intracerebroventricular treatment with biguanide antidiabetic drug metformin also induced AMPK phosphorylation in the central nervous system and increased food intake and life span in anorexic TB rats. Collectively, the findings of this study suggest that hypothalamic AMPK activation reverses cancer anorexia by inhibiting the production of proinflammatory molecules and controlling the neuropeptide expression in the hypothalamus, reflecting in a prolonged life span in TB rats. Thus, our data indicate that hypothalamic AMPK activation presents an attractive opportunity for the treatment of cancer-induced anorexia.

2006 ◽  
Vol 203 (7) ◽  
pp. 1665-1670 ◽  
Author(s):  
Peter Tamás ◽  
Simon A. Hawley ◽  
Rosemary G. Clarke ◽  
Kirsty J. Mustard ◽  
Kevin Green ◽  
...  

The adenosine monophosphate (AMP)–activated protein kinase (AMPK) has a crucial role in maintaining cellular energy homeostasis. This study shows that human and mouse T lymphocytes express AMPKα1 and that this is rapidly activated in response to triggering of the T cell antigen receptor (TCR). TCR stimulation of AMPK was dependent on the adaptors LAT and SLP76 and could be mimicked by the elevation of intracellular Ca2+ with Ca2+ ionophores or thapsigargin. AMPK activation was also induced by energy stress and depletion of cellular adenosine triphosphate (ATP). However, TCR and Ca2+ stimulation of AMPK required the activity of Ca2+–calmodulin-dependent protein kinase kinases (CaMKKs), whereas AMPK activation induced by increased AMP/ATP ratios did not. These experiments reveal two distinct pathways for the regulation of AMPK in T lymphocytes. The role of AMPK is to promote ATP conservation and production. The rapid activation of AMPK in response to Ca2+ signaling in T lymphocytes thus reveals that TCR triggering is linked to an evolutionally conserved serine kinase that regulates energy metabolism. Moreover, AMPK does not just react to cellular energy depletion but also anticipates it.


2019 ◽  
Vol 18 (7) ◽  
pp. 516-522
Author(s):  
Néstor F. Díaz ◽  
Héctor Flores-Herrera ◽  
Guadalupe García-López ◽  
Anayansi Molina-Hernández

The brain histaminergic system plays a pivotal role in energy homeostasis, through H1- receptor activation, it increases the hypothalamic release of histamine that decreases food intake and reduces body weight. One way to increase the release of hypothalamic histamine is through the use of antagonist/inverse agonist for the H3-receptor. Histamine H3-receptors are auto-receptors and heteroreceptors located on the presynaptic membranes and cell soma of neurons, where they negatively regulate the synthesis and release of histamine and other neurotransmitters in the central nervous system. Although several compounds acting as H3-receptor antagonist/inverse agonists have been developed, conflicting results have been reported and only one has been tested as anti-obesity in humans. Animal studies revealed the opposite effect in food intake, energy expeditor, and body weight, depending on the drug, spice, and route of administration, among others. The present review will explore the state of art on the effects of H3-receptor ligands on appetite and body-weight, going through the following: a brief overview of the circuit involved in the control of food intake and energy homeostasis, the participation of the histaminergic system in food intake and body weight, and the H3-receptor as a potential therapeutic target for obesity.


2007 ◽  
Vol 192 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Fang Cai ◽  
Armen V Gyulkhandanyan ◽  
Michael B Wheeler ◽  
Denise D Belsham

The mammalian hypothalamus comprises an array of phenotypically distinct cell types that interpret peripheral signals of energy status and, in turn, elicits an appropriate response to maintain energy homeostasis. We used a clonal representative hypothalamic cell model expressing proopiomelanocortin (POMC; N-43/5) to study changes in AMP-activated protein kinase (AMPK) activity and glucose responsiveness. We have demonstrated the presence of cellular machinery responsible for glucose sensing in the cell line, including glucokinase, glucose transporters, and appropriate ion channels. ATP-sensitive potassium channels were functional and responded to glucose. The N-43/5 POMC neurons may therefore be an appropriate cell model to study glucose-sensing mechanisms in the hypothalamus. In N-43/5 POMC neurons, increasing glucose concentrations decreased phospho-AMPK activity. As a relevant downstream effect, we found that POMC transcription increased with 2.8 and 16.7 mM glucose. Upon addition of leptin, with either no glucose or with 5 mM glucose, we found that leptin decreased AMPK activity in N-43/5 POMC neurons, but had no significant effect at 25 mM glucose, whereas insulin decreased AMPK activity at only 5 mM glucose. These results demonstrate that individual hypothalamic neuronal cell types, such as the POMC neuron, can have distinct responses to peripheral signals that relay energy status to the brain, and will therefore be activated uniquely to control neuroendocrine function.


2007 ◽  
Vol 32 (5) ◽  
pp. 852-856 ◽  
Author(s):  
Sean L. McGee

Exercise increases the metabolic capacity of skeletal muscle, which improves whole-body energy homeostasis and contributes to the positive health benefits of exercise. This is, in part, mediated by increases in the expression of a number of metabolic enzymes, regulated largely at the level of transcription. At a molecular level, many of these genes are regulated by the class II histone deacetylase (HDAC) family of transcriptional repressors, in particular HDAC5, through their interaction with myocyte enhancer factor 2 transcription factors. HDAC5 kinases, including 5′-AMP-activated protein kinase and protein kinase D, appear to regulate skeletal muscle metabolic gene transcription by inactivating HDAC5 and inducing HDAC5 nuclear export. These mechanisms appear to participate in exercise-induced gene expression and could be important for skeletal muscle adaptations to exercise.


Author(s):  
Sophie Lepropre ◽  
Marie-Blanche Onselaer ◽  
Cécile Oury ◽  
Luc Bertrand ◽  
Jean-Louis Vanoverschelde ◽  
...  

2008 ◽  
Vol 294 (1) ◽  
pp. C126-C135 ◽  
Author(s):  
Dan Zheng ◽  
Anjana Perianayagam ◽  
Donna H. Lee ◽  
M. Douglas Brannan ◽  
Li E. Yang ◽  
...  

AMP-activated protein kinase (AMPK), activated by an increase in intracellular AMP-to-ATP ratio, stimulates pathways that can restore ATP levels. We tested the hypothesis that AMPK activation influences extracellular fluid (ECF) K+ homeostasis. In conscious rats, AMPK was activated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion: 38.4 mg/kg bolus then 4 mg·kg−1·min−1 infusion. Plasma [K+] and [glucose] both dropped at 1 h of AICAR infusion and [K+] dropped to 3.3 ± 0.04 mM by 3 h, linearly related to the increase in muscle AMPK phosphorylation. AICAR treatment did not increase urinary K+ excretion. AICAR lowered [K+] whether plasma [K+] was chronically elevated or lowered. The K+ infusion rate needed to maintain baseline plasma [K+] reached 15.7 ± 1.3 μmol K+·kg−1·min−1 between 120 and 180 min AICAR infusion. In mice expressing a dominant inhibitory form of AMPK in the muscle (Tg-KD1), baseline [K+] was not different from controls (4.2 ± 0.1 mM), but the fall in plasma [K+] in response to AICAR (0.25 g/kg) was blunted: [K+] fell to 3.6 ± 0.1 in controls and to 3.9 ± 0.1 mM in Tg-KD1, suggesting that ECF K+ redistributes, at least in part, to muscle ICF. In summary, these findings illustrate that activation of AMPK activity with AICAR provokes a significant fall in plasma [K+] and suggest a novel mechanism for redistributing K+ from ECF to ICF.


2007 ◽  
Vol 6 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Naoto Kubota ◽  
Wataru Yano ◽  
Tetsuya Kubota ◽  
Toshimasa Yamauchi ◽  
Shinsuke Itoh ◽  
...  

2018 ◽  
Vol 293 (44) ◽  
pp. 16994-17007 ◽  
Author(s):  
Xin Gu ◽  
Michael D. Bridges ◽  
Yan Yan ◽  
Parker W. de Waal ◽  
X. Edward Zhou ◽  
...  

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis and a promising drug target for managing metabolic diseases such as type 2 diabetes. Many pharmacological AMPK activators, and possibly unidentified physiological metabolites, bind to the allosteric drug and metabolite (ADaM) site at the interface between the kinase domain (KD) in the α-subunit and the carbohydrate-binding module (CBM) in the β-subunit. Here, using double electron–electron resonance (DEER) spectroscopy, we demonstrate that the CBM–KD interaction is partially dissociated and the interface highly disordered in the absence of pharmacological ADaM site activators as inferred from a low depth of modulation and broad DEER distance distributions. ADaM site ligands such as 991, and to a lesser degree phosphorylation, stabilize the KD–CBM association and strikingly reduce conformational heterogeneity in the ADaM site. Our findings that the ADaM site, formed by the KD–CBM interaction, can be modulated by diverse ligands and by phosphorylation suggest that it may function as a hub for integrating regulatory signals.


Sign in / Sign up

Export Citation Format

Share Document