scholarly journals Changes in Adiponectin and Inflammatory Genes in Response to Hormonal Imbalances in Female Mice and Exacerbation of Depot Selective Visceral Adiposity by High-Fat Diet: Implications for Insulin Resistance

Endocrinology ◽  
2007 ◽  
Vol 148 (12) ◽  
pp. 5667-5679 ◽  
Author(s):  
Hui Zhang ◽  
Xinlei Chen ◽  
Jayaprakash Aravindakshan ◽  
M. Ram Sairam

Early obesity and late onset of insulin resistance associated with hormonal imbalances occur in FSH receptor-deficient follitropin receptor knockout female mice. This study tests the hypothesis that chronic high-fat diet aggravates obesogenic changes in a depot-specific manner and explores some molecular links of hormone imbalances with insulin resistance. In SV 129 mice, hormonal imbalances seem obligatory for exacerbation of diet-induced obesity. Visceral adiposity, glucose intolerance, and lipid disturbances in 9-month follitropin receptor knockout females were associated with decrease in adiponectin signaling. High-molecular-weight plasma adiponectin and adipose tissue adiponectin mRNA were decreased. Adiponectin receptors R1 and R2 mRNA was selectively altered in mesenteric fat but not periuterine fat. R2 decreased in the liver and R1 was higher in muscle. Whereas hepatic adenosine monophosphate T-activated protein kinase activity was down-regulated, both phosphoenolpyruvate carboxykinase and glucose-6-phosphatase enzymes were up-regulated. Longitudinally, diminishing sex hormone signaling in adipose tissue was associated with progressive down-regulation of adiponectin activity and gradual impaired glucose tolerance. Chronic high-fat diet in SV129 wild-type mice did not produce overt obesity but induced visceral fat depot changes accompanied by liver lipid accumulation, high cholesterol, and up-regulation of inflammation gene mRNAs. Thus, TNF-α, C-C motif chemokine receptor-2, and C-C motif chemokine ligand-2 were selectively elevated in mesenteric fat without altering glucose tolerance and adiponectin signaling. Our study highlights adiponectin signaling and regulation to be involved in hormone imbalance-induced insulin resistance and demonstrates selective visceral adipose depot alterations by chronic high-fat diet and induction of inflammatory genes.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rieko Takanabe ◽  
Koh Ono ◽  
Tomohide Takaya ◽  
Takahiro Horie ◽  
Hiromichi Wada ◽  
...  

Obesity is the result of an expansion and increase in the number of individual adipocytes. Since changes in gene expression during adipocyte differentiation and hypertrophy are closely associated with insulin resistance and cardiovascular diseases, further insight into the molecular basis of obesity is needed to better understand obesity-associated diseases. MicroRNAs (miRNAs) are approximately 17–24nt single stranded RNA, that post-transcriptionally regulate gene expression. MiRNAs control cell growth, differentiation and metabolism, and may be also involved in pathogenesis and pathophysiology of diseases. It has been proposed that miR-143 plays a role in the differentiation of preadipocytes into mature adipocytes in culture. However, regulated expression of miR-143 in the adult adipose tissue during the development of obesity in vivo is unknown. To solve this problem, C57BL/6 mice were fed with either high-fat diet (HFD) or normal chow (NC). Eight weeks later, severe insulin resistance was observed in mice on HFD. Body weight increased by 35% and the mesenteric fat weight increased by 3.3-fold in HFD mice compared with NC mice. We measured expression levels of miR-143 in the mesenteric fat tissue by real-time PCR and normalized with those of 5S ribosomal RNA. Expression of miR-143 in the mesenteric fat was significantly up-regulated (3.3-fold, p<0.05) in HFD mice compared to NC mice. MiR-143 expression levels were positively correlated with body weight (R=0.577, p=0.0011) and the mesenteric fat weight (R=0.608, p=0.0005). We also measured expression levels in the mesenteric fat of PPARγ and AP2, whose expression are deeply involved in the development of obesity, insulin resistant and arteriosclerosis. The expression levels of miR-143 were closely correlated with those of PPARγ (R=0.600, p=0.0040) and AP2 (R=0.630, p=0.0022). These findings provide the first evidence for up-regulated expression of miR-143 in the mesenteric fat of HFD-induced obese mice, which might contribute to regulated expression of genes involved in the pathophysiology of obesity.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A806-A806
Author(s):  
Rachel Bell ◽  
Elisa Villalobos ◽  
Mark Nixon ◽  
Allende Miguelez-Crespo ◽  
Matthew Sharp ◽  
...  

Abstract Glucocorticoids play a critical role in metabolic homeostasis. Chronic or excessive activation of the glucocorticoid receptor (GR) in adipose tissue contributes to metabolic disorders such as glucose intolerance and insulin resistance. Steroid-metabolising enzymes in adipose, such as 11β-HSD1 or 5α-reductase, modulate the activation of GR by converting primary glucocorticoids into more or less potent ligands. Carbonyl reductase 1 (CBR1) is a novel regulator of glucocorticoid metabolism, converting corticosterone/cortisol to 20β-dihydrocorticosterone/cortisol (20β-DHB/F); a metabolite which retains GR activity. CBR1 is abundant in adipose tissue and increased in obese adipose of mice and humans1 and increased Cbr1 expression is associated with increased fasting glucose1. We hypothesised that increased Cbr1/20β-DHB in obese adipose contributes to excessive GR activation and worsens glucose tolerance. We generated a novel murine model of adipose-specific Cbr1 over-expression (R26-Cbr1Adpq) by crossing conditional knock-in mice with Adiponectin-Cre mice. CBR1 protein and activity were doubled in subcutaneous adipose tissue of male and female R26-Cbr1Adpq mice compared with floxed controls; corresponding to a two-fold increase 20β-DHB (1.6 vs. 4.2ng/g adipose; P=0.0003; n=5-7/group). There were no differences in plasma 20β-DHB or corticosterone. Bodyweight, lean or fat mass, did not differ between male or female R26-Cbr1Adpq mice and floxed controls. Lean male R26-Cbr1Adpq mice had higher fasting glucose (9.5±0.3 vs. 8.4±0.3mmol/L; P=0.04) and worsened glucose tolerance (AUC 1819±66 vs. 1392±14; P=0.03). Female R26-Cbr1Adpq mice also had a worsened glucose tolerance but fasting glucose was not altered with genotype. There were no differences in fasting insulin or non-esterified fatty acid between genotypes in either sex. Expression of GR-induced genes Pnpla2, Gilz and Per1, were increased in adipose of R26-Cbr1Adpq mice. Following high-fat diet induced obesity, no differences in bodyweight, lean or fat mass, with genotype were observed in male and female mice, and genotype differences in fasting glucose and glucose tolerance were abolished. In conclusion, adipose-specific over-expression of Cbr1 in lean male and female mice led to increased levels of 20β-DHB in adipose but not plasma, and both sexes having worsened glucose tolerance. The influence of adipose CBR1/20β-DHB on glucose tolerance was not associated with altered fat mass or bodyweight and was attenuated by high-fat diet-induced obesity. These metabolic consequences of Cbr1 manipulation require careful consideration given the wide variation in CBR1 expression in the human population, the presence of inhibitors and enhancers in many foodstuffs and the proposed use of inhibitors as an adjunct for cancer treatment regimens. Reference: Morgan et al., Scientific Reports. 2017; 7.


2013 ◽  
Vol 305 (3) ◽  
pp. E388-E395 ◽  
Author(s):  
Michael S. F. Wiedemann ◽  
Stephan Wueest ◽  
Flurin Item ◽  
Eugen J. Schoenle ◽  
Daniel Konrad

High-fat feeding for 3–4 days impairs glucose tolerance and hepatic insulin sensitivity. However, it remains unclear whether the evolving hepatic insulin resistance is due to acute lipid overload or the result of induced adipose tissue inflammation and consequent dysfunctional adipose tissue-liver cross-talk. In the present study, feeding C57Bl6/J mice a fat-enriched diet [high-fat diet (HFD)] for 4 days induced glucose intolerance, hepatic insulin resistance (as assessed by hyperinsulinemic euglycemic clamp studies), and hepatic steatosis as well as adipose tissue inflammation (i.e., TNFα expression) compared with standard chow-fed mice. Adipocyte-specific depletion of the antiapoptotic/anti-inflammatory factor Fas (CD95) attenuated adipose tissue inflammation and improved glucose tolerance as well as hepatic insulin sensitivity without altering the level of hepatic steatosis induced by HFD. In summary, our results identify adipose tissue inflammation and resulting dysfunctional adipose tissue-liver cross-talk as an early event in the development of HFD-induced hepatic insulin resistance.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5173 ◽  
Author(s):  
Shibin Ding ◽  
Jinjin Jiang ◽  
Zhe Wang ◽  
Guofu Zhang ◽  
Jianli Yin ◽  
...  

Background Obesity-induced glucose metabolism disorder is associated with chronic, low-grade, systemic inflammation and is considered a risk factor for diabetes and metabolic syndrome. Resveratrol (RES), a natural anti-inflammatory compound, is observed to improve glucose tolerance and insulin sensitivity in obese rodents and humans. This study aimed to test the effects of RES administration on insulin signaling and the inflammatory response in visceral white adipose tissue (WAT) caused by a high-fat diet (HFD) in mice. Methods A total of 40 wild-type C57BL/6 male mice were divided into four groups (10 in each group): the standard chow diet (STD) group was fed a STD; the HFD group was fed a HFD; and the HFD-RES/L and HFD-RES/H groups were fed a HFD plus RES (200 and 400 mg/kg/day, respectively). The L and H in RES/L and RES/H stand for low and high, respectively. Glucose tolerance, insulin sensitivity, circulating inflammatory biomarkers and lipid profile were determined. Quantitative PCR and Western blot were used to determine the expression of CC-chemokine receptor 2 (CCR2), other inflammation markers, glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS-1) and pAkt/Akt and to assess targets of interest involving glucose metabolism and inflammation in visceral WAT. Results HFD increased the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and proinflammatory cytokines in serum, decreased the high-density lipoprotein cholesterol level in serum, and induced insulin resistance and WAT inflammation in mice. However, RES treatment alleviated insulin resistance, increased the expressions of pAkt, GLUT4 and IRS-1 in WAT, and decreased serum proinflammatory cytokine levels, macrophage infiltration and CCR2 expression in WAT. Conclusion Our results indicated that WAT CCR2 may play a vital role in macrophage infiltration and the inflammatory response during the development of insulin resistance in HFD-induced obesity. These data suggested that administration of RES offers protection against abnormal glucose metabolism and inflammatory adaptations in visceral WAT in mice with HFD-induced obesity.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
Elodie Riant ◽  
Aurélie Waget ◽  
Haude Cogo ◽  
Jean-François Arnal ◽  
Rémy Burcelin ◽  
...  

Although corroborating data indicate that estrogens influence glucose metabolism through the activation of the estrogen receptor α (ERα), it has not been established whether this pathway could represent an effective therapeutic target to fight against metabolic disturbances induced by a high-fat diet (HFD). To this end, we first evaluated the influence of chronic 17β-estradiol (E2) administration in wild-type ovariectomized mice submitted to either a normal chow diet or a HFD. Whereas only a modest effect was observed in normal chow diet-fed mice, E2 administration exerted a protective effect against HFD-induced glucose intolerance, and this beneficial action was abolished in ERα-deficient mice. Furthermore, E2 treatment reduced HFD-induced insulin resistance by 50% during hyperinsulinemic euglycemic clamp studies and improved insulin signaling (Akt phosphorylation) in insulin-stimulated skeletal muscles. Unexpectedly, we found that E2 treatment enhanced cytokine (IL-6, TNF-α) and plasminogen activator inhibitor-1 mRNA expression induced by HFD in the liver and visceral adipose tissue. Interestingly, although the proinflammatory effect of E2 was abolished in visceral adipose tissue from chimeric mice grafted with bone marrow cells from ERα-deficient mice, the beneficial effect of the hormone on glucose tolerance was not altered, suggesting that the metabolic and inflammatory effects of estrogens can be dissociated. Eventually comparison of sham-operated with ovariectomized HFD-fed mice demonstrated that endogenous estrogens levels are sufficient to exert a full protective effect against insulin resistance and glucose intolerance. In conclusion, the regulation of the ERα pathway could represent an effective strategy to reduce the impact of high-fat diet-induced type 2 diabetes.


2013 ◽  
Vol 304 (12) ◽  
pp. E1321-E1330 ◽  
Author(s):  
Kazunari Nohara ◽  
Rizwana S. Waraich ◽  
Suhuan Liu ◽  
Mathieu Ferron ◽  
Aurélie Waget ◽  
...  

Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.


Sign in / Sign up

Export Citation Format

Share Document