scholarly journals Continuous and Cyclic Progesterone Differentially Interact with Estradiol in the Regulation of Alzheimer-Like Pathology in Female 3×Transgenic-Alzheimer’s Disease Mice

Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2713-2722 ◽  
Author(s):  
Jenna C. Carroll ◽  
Emily R. Rosario ◽  
Angela Villamagna ◽  
Christian J. Pike

Depletion of estrogens and progesterone at menopause has been linked to an increased risk for the development of Alzheimer’s disease (AD) in women. A currently controversial literature indicates that although treatment of postmenopausal women with hormone therapy (HT) may reduce the risk of AD, several parameters of HT may limit its potential efficacy and perhaps, even exacerbate AD risk. One such parameter is continuous vs. cyclic delivery of the progestogen component of HT. Recent experimental evidence suggests that continuous progesterone can attenuate neural actions of estradiol (E2). In the present study, we compared the effects of continuous and cyclic progesterone treatment in the presence and absence of E2 in ovariectomized 3×Tg-AD mice, a transgenic mouse model of AD. We found that ovariectomy-induced hormone depletion increases AD-like pathology in female 3×Tg-AD mice, including accumulation of β-amyloid, tau hyperphosphorylation, and impaired hippocampal-dependent behavior. E2 treatment alone prevents the increases in pathology. Continuous progesterone did not affect β-amyloid levels when delivered alone but blocked the Aβ-lowering action of E2. In contrast, cyclic progesterone significantly reduced β-amyloid levels by itself and enhanced rather than inhibited the E2 effects. These results provide new insight into the neural interactions between E2 and progesterone that may prove valuable in optimizing HT regimens in postmenopausal women.

2019 ◽  
Vol 15 ◽  
pp. P1033-P1034
Author(s):  
Keith R. Morneau ◽  
Brian G. Sansoucy ◽  
Robert J. Lagier ◽  
Charles M. Rowland ◽  
Torey Neusch ◽  
...  

2020 ◽  
Author(s):  
Damián Hernández ◽  
Louise A. Rooney ◽  
Maciej Daniszewski ◽  
Lerna Gulluyan ◽  
Helena H. Liang ◽  
...  

SummaryApolipoprotein E (APOE) is the most important susceptibility gene for late onset of Alzheimer’s disease, with the presence of APOE-ε4 associated with increased risk of developing Alzheimer’s disease. Here, we reprogrammed human fibroblasts from individuals with different APOE-ε genotypes into induced pluripotent stem cells, and generated isogenic lines with different APOE profiles. We then differentiated these into cerebral organoids for six months and assessed the suitability of this in vitro system to measure APOE, β amyloid, and Tau phosphorylation levels. We identified intra- and inter-variabilities in the organoids’ cell composition. Using the CRISPR-edited APOE isogenic lines, we observed more homogenous cerebral organoids, and similar levels of APOE, β amyloid, and Tau between the isogenic lines, with the exception of one site of Tau phosphorylation which was higher in the APOE-ε4/ε4 organoids. These data describe that pathological hallmarks of AD are observed in cerebral organoids, and that their variation is mainly independent of the APOE-ε status of the cells, but associated with the high variability of cerebral organoid differentiation. It demonstrates that the batch-to-batch and cell-line-to-cell-line variabilities need to be considered when using cerebral organoids.


2019 ◽  
Vol 5 (2) ◽  
pp. 94-105 ◽  
Author(s):  
Ya-Nan Ou ◽  
Hao Hu ◽  
Zuo-Teng Wang ◽  
Wei Xu ◽  
Lan Tan ◽  
...  

Objective: To examine whether plasma neurofilament light (NFL) might be a potential longitudinal biomarker for Alzheimer’s disease (AD). Methods: A total of 835 individuals from the Alzheimer’s Disease Neuroimaging Initiative were involved. Correlations of the rate of change in plasma NFL with cerebrospinal fluid biomarkers, cognition, and brain structure were investigated. Cox proportional hazards models were used to assess the associations between quartiles of plasma NFL and the risk of AD conversion. Results: Participants were further divided into β amyloid-positive (Aβ+) versus β amyloid-negative (Aβ−), resulting in five biomarker group combinations, which are CN Aβ−, CN Aβ+, MCI Aβ−, MCI Aβ+ and AD Aβ+. Plasma NFL concentration markedly increased in the five groups longitudinally ( p < 0.001) with the greatest rate of change in AD Aβ+ group. The rate of change in plasma NFL was associated with cognitive deficits and neuroimaging hallmarks of AD over time ( p < 0.005). Compared with the bottom quartile, the top quartile of change rate was associated with a 5.41-fold increased risk of AD (95% CI = 1.83−16.01) in the multivariate model. Conclusion: Our finding implies the potential of plasma NFL as a longitudinal noninvasive biomarker in AD.


Sign in / Sign up

Export Citation Format

Share Document