scholarly journals Pathogen-Associated Molecular Patterns Initiate Inflammation and Perturb the Endocrine Function of Bovine Granulosa Cells From Ovarian Dominant Follicles via TLR2 and TLR4 Pathways

Endocrinology ◽  
2013 ◽  
Vol 154 (9) ◽  
pp. 3377-3386 ◽  
Author(s):  
Jennifer C. Price ◽  
John J. Bromfield ◽  
I. Martin Sheldon

Bacterial infections of the uterus or mammary gland commonly cause disease and infertility by perturbing growth and steroidogenesis of the dominant follicle in the ovary of cattle. Cells of the innate immune system use Toll-like receptors TLR2, TLR4, and TLR5 to recognize pathogen-associated molecular patterns (PAMPs) expressed by bacteria, leading to activation of MAPK and nuclear factor-κBκ pathways and production of inflammatory cytokines such as IL-1β and IL-6, and the chemokine IL-8. The present study tested whether granulosa cells from dominant follicles have functional TLR2, TLR4, and TLR5 pathways. Supernatants of primary bovine granulosa cells accumulated IL-1β, IL-6, and IL-8 when treated for 24 hours with Pam3CSK4 (PAM) that binds TLR2 or lipopolysaccharide (LPS) that binds TLR4 but not flagellin that binds TLR5. Granulosa cell responses to PAM or LPS were rapid, with increased phosphorylation of p38 and ERK1/2 within 30 minutes and increased abundance of IL6, IL1B, IL10, TNF, IL8, and CCL5 mRNA after 3 hours of treatment. Accumulation of IL-6 in response to PAM and LPS was attenuated using small interfering RNA targeting TLR2 and TLR4, respectively. Furthermore, treating granulosa cells with inhibitors targeting MAPK or nuclear factor-κB reduced the accumulation of IL-6 in response to LPS or PAM. Treatment with LPS or PAM reduced the accumulation of estradiol and progesterone, and the PAMPs reduced granulosa cell expression of CYP19A1 mRNA and protein. In conclusion, bacterial PAMPs initiate inflammation and perturb the endocrine function of bovine granulosa cells from dominant follicles via TLR2 and TLR4 pathways.

Endocrinology ◽  
2014 ◽  
Vol 155 (4) ◽  
pp. 1453-1465 ◽  
Author(s):  
Matthew L. Turner ◽  
James G. Cronin ◽  
Gareth D. Healey ◽  
Iain Martin Sheldon

Bacteria often infect the endometrium of cattle to cause endometritis, uterine disease, and infertility. Lipopeptides are commonly found among bacteria and are detected by the Toll-like receptor (TLR) cell surface receptor TLR2 on immune cells. Heterodimers of TLR2 with TLR1 or TLR6 activate MAPK and nuclear factor-κB intracellular signaling pathways to stimulate inflammatory responses. In the endometrium, epithelial and stromal cells are the first to encounter invading bacteria, so the present study explored whether endometrial cells can also mount inflammatory responses to bacterial lipopeptides via TLRs. The supernatants of pure populations of primary bovine endometrial epithelial and stromal cells accumulated the cytokine IL-6 and the chemokine IL-8 in response to triacylated or diacylated bacterial lipopeptides. The accumulation of IL-6 and IL-8 in response to triacylated lipopeptides was reduced by small interfering RNA targeting TLR2 or TLR1 but not TLR6, whereas cellular responses to diacylated lipopeptide were reduced by small interfering RNA targeting TLR2, TLR1, or TLR6. Both lipopeptides induced rapid phosphorylation of ERK1/2, p38, and nuclear factor-κB in endometrial cells, and inhibitors of ERK1/2 or p38 limited the accumulation of IL-6. The ovarian steroids estradiol and progesterone had little impact on inflammatory responses to lipopeptides. The endometrial epithelial and stromal cell responses to lipopeptides via TLR2, TLR1, and TLR6 provide a mechanism linking a wide range of bacterial infections to inflammation of the endometrium.


2007 ◽  
Vol 35 (6) ◽  
pp. 1512-1514 ◽  
Author(s):  
M. Schröder ◽  
A.G. Bowie

Viral recognition is mediated by different classes of PRRs (pattern-recognition receptors) among which the TLRs (Toll-like receptors) and the RLHs [RIG (retinoic-acid-inducible)-like helicases] play major roles. The detection of PAMPs (pathogen-associated molecular patterns) by these PRRs leads to the initiation of signalling pathways that ultimately result in the activation of transcription factors such as NF-κB (nuclear factor κB) and IRF-3 [IFN (interferon) regulatory factor-3] and IRF-7 and the induction of pro-inflammatory cytokines and type I IFNs. Viruses have evolved a fine-tuned mechanism to evade detection by the immune system or to interfere with the resulting signalling pathways. Here, we discuss viral evasion proteins that specifically interfere with TLR and/or RLH signalling.


Endocrinology ◽  
2013 ◽  
Vol 154 (8) ◽  
pp. 2626-2639 ◽  
Author(s):  
Young Mi Song ◽  
Sun Ok Song ◽  
Young-Hye You ◽  
Kun-Ho Yoon ◽  
Eun Seok Kang ◽  
...  

Abstract Growing evidence suggests that advanced glycation end-products (AGEs) are cytotoxic to pancreatic β-cells. The aims of this study were to investigate whether glycated albumin (GA), an early precursor of AGEs, would induce dysfunction in pancreatic β-cells and to determine which kinds of cellular mechanisms are activated in GA-induced β-cell apoptosis. Decreased viability and increased apoptosis were induced in INS-1 cells treated with 2.5 mg/mL GA under 16.7mM high-glucose conditions. Insulin content and glucose-stimulated secretion from isolated rat islets were reduced in 2.5 mg/mL GA-treated cells. In response to 2.5 mg/mL GA in INS-1 cells, autophagy induction and flux decreased as assessed by green fluorescent protein–microtubule-associated protein 1 light chain 3 dots, microtubule-associated protein 1 light chain 3-II conversion, and SQSTM1/p62 in the presence and absence of bafilomycin A1. Accumulated SQSTM1/p62 through deficient autophagy activated the nuclear factor-κB (p65)-inducible nitric oxide synthase-caspase-3 cascade, which was restored by treatment with small interfering RNA against p62. Small interfering RNA treatment against autophagy-related protein 5 significantly inhibited the autophagy machinery resulting in a significant increase in iNOS-cleaved caspase-3 expression. Treatment with 500μM 4-phenyl butyric acid significantly alleviated the expression of endoplasmic reticulum stress markers and iNOS in parallel with upregulated autophagy induction. However, in the presence of bafilomycin A1, the decreased viability of INS-1 cells was not recovered. Glycated albumin, an early precursor of AGE, caused pancreatic β-cell death by inhibiting autophagy induction and flux, resulting in nuclear factor-κB (p65)-iNOS-caspase-3 cascade activation as well as by increasing susceptibility to endoplasmic reticulum stress and oxidative stress.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 297 ◽  
Author(s):  
Nasir Javaid ◽  
Sangdun Choi

Toll-like receptors (TLRs) represent a family of pattern recognition receptors that recognize certain pathogen-associated molecular patterns and damage-associated molecular patterns. TLRs are highly interesting to researchers including immunologists because of the involvement in various diseases including cancers, allergies, autoimmunity, infections, and inflammation. After ligand engagement, TLRs trigger multiple signaling pathways involving nuclear factor-κB (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated protein kinases (MAPKs) for the production of various cytokines that play an important role in diseases like cancer. TLR activation in immune as well as cancer cells may prevent the formation and growth of a tumor. Nonetheless, under certain conditions, either hyperactivation or hypoactivation of TLRs supports the survival and metastasis of a tumor. Therefore, the design of TLR-targeting agonists as well as antagonists is a promising immunotherapeutic approach to cancer. In this review, we mainly describe TLRs, their involvement in cancer, and their promising properties for anticancer drug discovery.


Sign in / Sign up

Export Citation Format

Share Document