scholarly journals Glycated Albumin Causes Pancreatic β-Cells Dysfunction Through Autophagy Dysfunction

Endocrinology ◽  
2013 ◽  
Vol 154 (8) ◽  
pp. 2626-2639 ◽  
Author(s):  
Young Mi Song ◽  
Sun Ok Song ◽  
Young-Hye You ◽  
Kun-Ho Yoon ◽  
Eun Seok Kang ◽  
...  

Abstract Growing evidence suggests that advanced glycation end-products (AGEs) are cytotoxic to pancreatic β-cells. The aims of this study were to investigate whether glycated albumin (GA), an early precursor of AGEs, would induce dysfunction in pancreatic β-cells and to determine which kinds of cellular mechanisms are activated in GA-induced β-cell apoptosis. Decreased viability and increased apoptosis were induced in INS-1 cells treated with 2.5 mg/mL GA under 16.7mM high-glucose conditions. Insulin content and glucose-stimulated secretion from isolated rat islets were reduced in 2.5 mg/mL GA-treated cells. In response to 2.5 mg/mL GA in INS-1 cells, autophagy induction and flux decreased as assessed by green fluorescent protein–microtubule-associated protein 1 light chain 3 dots, microtubule-associated protein 1 light chain 3-II conversion, and SQSTM1/p62 in the presence and absence of bafilomycin A1. Accumulated SQSTM1/p62 through deficient autophagy activated the nuclear factor-κB (p65)-inducible nitric oxide synthase-caspase-3 cascade, which was restored by treatment with small interfering RNA against p62. Small interfering RNA treatment against autophagy-related protein 5 significantly inhibited the autophagy machinery resulting in a significant increase in iNOS-cleaved caspase-3 expression. Treatment with 500μM 4-phenyl butyric acid significantly alleviated the expression of endoplasmic reticulum stress markers and iNOS in parallel with upregulated autophagy induction. However, in the presence of bafilomycin A1, the decreased viability of INS-1 cells was not recovered. Glycated albumin, an early precursor of AGE, caused pancreatic β-cell death by inhibiting autophagy induction and flux, resulting in nuclear factor-κB (p65)-iNOS-caspase-3 cascade activation as well as by increasing susceptibility to endoplasmic reticulum stress and oxidative stress.

Endocrinology ◽  
2002 ◽  
Vol 143 (4) ◽  
pp. 1225-1234 ◽  
Author(s):  
Dongbo Liu ◽  
Alessandra K. Cardozo ◽  
Martine I. Darville ◽  
Décio L. Eizirik

Abstract Viral infections may trigger the autoimmune assault leading to type 1 diabetes mellitus. Double-stranded RNA (dsRNA) is produced by many viruses during their replicative cycle. The dsRNA, tested as synthetic poly(IC) (PIC), in synergism with the proinflammatory cytokines interferon-γ (IFN-γ) and/or IL-1β, results in nitric oxide production, Fas expression, β-cell dysfunction, and death. Activation of the transcription nuclear factor-κB (NF-κB) is required for PIC-induced inducible nitric oxide synthase expression in β-cells, and we hypothesized that this transcription factor may also participate in PIC-induced Fas expression and β-cell apoptosis. This hypothesis, and the possibility that PIC induces expression of additional chemokines and cytokines (previously reported as NF-κB dependent) in pancreatic β-cells, was investigated in the present study. We observed that the PIC-responsive region in the Fas promoter is located between nucleotides −223 and −54. Site-directed mutations at the NF-κB and CCAAT/enhancer binding protein-binding sites prevented PIC-induced Fas promoter activity. Increased Fas promoter activity was paralleled by enhanced susceptibility of PIC + cytokine-treated β-cells to apoptosis induced by Fas ligand. β-Cell infection with the NF-κB inhibitor AdIκB(SA)2 prevented both necrosis and apoptosis induced by PIC + IL-1β or PIC + IFN-γ. Messenger RNAs for several chemokines and one cytokine were induced by PIC, alone or in combination with IFN-γ, in pancreatic β-cells. These included IP-10, interferon-γ-inducible protein-10, IL-15, macrophage chemoattractant protein-1, fractalkine, and macrophage inflammatory protein-3α. There was not, however, induction of IL-1β expression. We propose that dsRNA, generated during a viral infection, may contribute for β-cell demise by both inducing expression of chemokines and IL-15, putative contributors for the build-up of insulitis, and by synergizing with locally produced cytokines to induce β-cell apoptosis. Activation of the transcription factor NF-κB plays a central role in at least part of the deleterious effects of dsRNA in pancreatic β-cells.


2001 ◽  
Vol 276 (52) ◽  
pp. 48879-48886 ◽  
Author(s):  
Alessandra K. Cardozo ◽  
Harry Heimberg ◽  
Yves Heremans ◽  
Ruth Leeman ◽  
Burak Kutlu ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 149 (2) ◽  
pp. 672-680 ◽  
Author(s):  
Oumei Wang ◽  
Kun Cai ◽  
Shanshan Pang ◽  
Ting Wang ◽  
Dongfei Qi ◽  
...  

Pancreatic-derived factor (PANDER) is a cytokine-like peptide highly expressed in pancreatic β-cells. PANDER was reported to promote apoptosis of pancreatic β-cells and secrete in response to glucose. Here we explored the effects of glucose on PANDER expression, and the underlying mechanisms in murine pancreatic β-cell line MIN6 and primary islets. Our results showed that glucose up-regulated PANDER mRNA and protein levels in a time- and dose-dependent manner in MIN6 cells and pancreatic islets. In cells expressing cAMP response element-binding protein (CREB) dominant-negative construct, glucose failed to induce PANDER gene expression and promoter activation. Treatment of the cells with calcium chelator [EGTA, 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA/AM)], the voltage-dependent Ca2+ channel inhibitor (nifedipine), the protein kinase A (PKA) inhibitor (H89), the protein kinase C (PKC) inhibitor (Go6976), or the MAPK kinase 1/2 inhibitor (PD98059), all significantly inhibited glucose-induced PANDER gene expression and promoter activation. Further studies showed that glucose induced CREB phosphorylation through Ca2+-PKA-ERK1/2 and Ca2+-PKC pathways. Thus, the Ca2+-PKA-ERK1/2-CREB and Ca2+-PKC-CREB signaling pathways are involved in glucose-induced PANDER gene expression. Wortmannin (phosphatidylinositol 3-kinase inhibitor), ammonium pyrrolidinedithiocarbamate (nuclear factor-κB inhibitor and nonspecific antioxidant), and N-acetylcysteine (antioxidant) were also found to inhibit glucose-induced PANDER promoter activation and gene expression. Because there is no nuclear factor-κB binding site in the promoter region of PANDER gene, these results suggest that phosphatidylinositol 3-kinase and reactive oxygen species be involved in glucose-induced PANDER gene expression. In conclusion, glucose induces PANDER gene expression in pancreatic β-cells through multiple signaling pathways. Because PANDER is expressed by pancreatic β-cells and in response to glucose in a similar way to those of insulin, PANDER may be involved in glucose homeostasis.


2021 ◽  
Author(s):  
Yin Liu ◽  
Siyuan He ◽  
Ruixue Zhou ◽  
Xueping Zhang ◽  
Shanshan Yang ◽  
...  

Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The present study was undertaken in a conditional knockout of <i>Nf-ya</i> specifically in pancreatic β-cells (<i>Nf-ya </i>βKO) to define the essential physiological role of NF-Y in β-cells. <i>Nf-ya </i>βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca<sup>2+</sup> influx in response to glucose, which was associated an inefficient glucose uptake into β-cells due to a decreased expression of glucose transporter 2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islets homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.


2020 ◽  
Vol 10 (2) ◽  
pp. 95
Author(s):  
Rosa Martha Perez Gutierrez ◽  
Alethia Muñiz Ramirez ◽  
Jose Maria Mota Flores ◽  
Abraham Heriberto Garcia Campoy

Background: Cucurbita Argyrosperma seeds have acquired a reputation as an herbal remedy to treat various diseases because this plant is a predominant source of natural compounds with potent anti-inflammatory, antioxidant properties, and seed supplementation improves oxidative stress. Previous studies indicated that an imbalance between H2O2 production and elimination capacity is responsible for β-cell vulnerability, making β-cell a target susceptible to pathological disasters.This investigation aimed to evaluate the protective effects of one new multiflorane-type triterpene  3β-trans-caffeoyloxymultiflor-8-ene- 7α,12β, 18 β-triol (1)  from MeOH extract from C. Argyrosperma, on rat pancreatic β cells (INS-1 cells) exposed to hydrogen peroxide (H2O2) induced oxidative stress conditions.Methods: The chemical structure of the novel triterpene, which was identified as 3β-trans-caffeoyloxymultiflor-8-ene- 7α,12β, 18 β-triol (1), was established based on the interpretation of spectroscopic analyses. The antioxidant activities of 1 were leaded by detect radical scavenging potential of 2,2-dyphenyl-1-picrylhydrazyl (DPPH) and 3.1 2,2′-Azino-bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) ABTS. The assays were conducted on INS-1 cells line exposed to increasing concentrations of 1 at 5,10 and 20 µg/mL and H2O2 at 250 µM. Then, the experiments, cell viability, cell integrity ((LDH; lactate dehydrogenase release), mitochondrial function (ATP analysis), ROS formation, lipid peroxidation (MDA) and caspase-3, 9 activities were measured in the cells. We also determined the effect of 1 on antioxidant enzyme levels and cytotoxicity in pancreatic β cells under oxidant conditions.Results: The results showed that triterpene displayed high free-radical-scavenging activity, which is similar to that of standard antioxidants used. At concentrations of 5, 10, and 20 𝜇g/mL protect INS-1 cells against H2O2 induced cytotoxicity decrease in cell death, with a marked increase in cell viability, sustained cellular functionality (ATP). Antioxidant enzymes such as glutathione peroxidase (GPx), glutathione reduced (GSH), catalase (CAT), superoxide dismutase (SOD), and the non-antioxidant enzyme (GSH) increased in INS-1 cells with 1 pretreatment. MDA in pancreatic cells was ameliorated by 1 pretreatment reducing intracellular reactive oxygen species level. Findings also demonstrated that H2O2-induced apoptosis in INS-1 cells and produced modulation of the caspase-3, 9 expressions in INS-1 cells exposed to 1. Exposure to 1significantly inhibited ROS and apoptosis production, reducing β cell dysfunction under oxidant conditions.Conclusions: Triterpene consequently could be a promising natural antioxidant for use in maintaining the integrity of pancreatic β-cells exposed to oxidative stress conditions being able to participate in the control type 2 diabetes.Keywords: Cucurbita Argyrosperma; antioxidants; multiflorane; free radical scavenging: oxidative stress


2009 ◽  
Vol 44 (3) ◽  
pp. 171-178 ◽  
Author(s):  
James E P Brown ◽  
David J Onyango ◽  
Manjunath Ramanjaneya ◽  
Alex C Conner ◽  
Snehal T Patel ◽  
...  

The role of the adipocyte-derived factor visfatin in metabolism remains controversial, although some pancreatic β-cell-specific effects have been reported. This study investigated the effects of visfatin upon insulin secretion, insulin receptor activation and mRNA expression of key diabetes-related genes in clonal mouse pancreatic β-cells. β-TC6 cells were cultured in RPMI 1640 and were subsequently treated with recombinant visfatin. One-hour static insulin secretion was measured by ELISA. Phospho-specific ELISA and western blotting were used to detect insulin receptor activation. Real-time SYBR Green PCR array technology was used to measure the expression of 84 diabetes-related genes in both treatment and control cells. Incubation with visfatin caused significant changes in the mRNA expression of several key diabetes-related genes, including marked up-regulation of insulin (9-fold increase), hepatocyte nuclear factor (HNF)1β (32-fold increase), HNF4α (16-fold increase) and nuclear factor κB (40-fold increase). Significant down-regulation was seen in angiotensin-converting enzyme (−3.73-fold) and UCP2 (−1.3-fold). Visfatin also caused a significant 46% increase in insulin secretion compared to control (P<0.003) at low glucose, and this increase was blocked by co-incubation with the specific nicotinamide phosphoribosyltransferase inhibitor FK866. Both visfatin and nicotinamide mononucleotide induced activation of both insulin receptor and extracellular signal-regulated kinase (ERK)1/2, with visfatin-induced insulin receptor/ERK1/2 activation being inhibited by FK866. We conclude that visfatin can significantly regulate insulin secretion, insulin receptor phosphorylation and intracellular signalling and the expression of a number of β-cell function-associated genes in mouse β-cells.


2021 ◽  
Author(s):  
Yin Liu ◽  
Siyuan He ◽  
Ruixue Zhou ◽  
Xueping Zhang ◽  
Shanshan Yang ◽  
...  

Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The present study was undertaken in a conditional knockout of <i>Nf-ya</i> specifically in pancreatic β-cells (<i>Nf-ya </i>βKO) to define the essential physiological role of NF-Y in β-cells. <i>Nf-ya </i>βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca<sup>2+</sup> influx in response to glucose, which was associated an inefficient glucose uptake into β-cells due to a decreased expression of glucose transporter 2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islets homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document