Placental Adaptation to Maternal Low Protein Diet – Role of 11β-Hydroxysteroid Dehydrogenase Type 2 (11β-HSD2).

2010 ◽  
pp. P1-627-P1-627
Author(s):  
EC Cottrell ◽  
L Kappeler ◽  
JR Seckl
Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 957 ◽  
Author(s):  
Albert Li ◽  
Hsiang-Yen Lee ◽  
Yen-Chung Lin

The effects of ketoanalogues (KA) on chronic kidney disease (CKD) deterioration have not yet been fully confirmed. To strengthen the evidence of the role of KA in CKD, PubMed and Embase were searched for studies published through February 2019. Effect sizes from ten randomized control trials (RCTs) and two non-RCTs comprising a total of 951 patients were pooled and analyzed. A restricted protein diet supplemented with ketoanalogues (RPKA) was found to significantly delay the progression of CKD (p = 0.008), particularly in patients with an estimated glomerular filtration rate (eGFR) > 18 mL/min/1.73 m2 (p < 0.0001). No significant change in eGFR was found when comparing a very-low-protein diet and a low-protein diet (p = 0.10). In addition, compared with the placebo, RPKA did not cause malnutrition (albumin: p = 0.56; cholesterol: p = 0.50). Moreover, RPKA significantly decreased phosphorous levels (p = 0.001), increased calcium levels (p = 0.04), and decreased parathyroid hormone (PTH) levels (p = 0.05) in patients with eGFR < 18 mL/min/1.73 m2. In conclusion, RPKA could slow down the progression of CKD in patients with eGFR > 18 mL/min/1.73 m2 without causing malnutrition and reverse CKD-MBD in patients with eGFR < 18 mL/min/1.73 m2.


2019 ◽  
Vol 317 (6) ◽  
pp. E1015-E1021 ◽  
Author(s):  
Tristan Chalvon-Demersay ◽  
Joanna Moro ◽  
Patrick C. Even ◽  
Catherine Chaumontet ◽  
Daniel Tomé ◽  
...  

General control nonderepressible 2 (GCN2) is a kinase that detects amino acid deficiency and is involved in the control of protein synthesis and energy metabolism. However, the role of hepatic GCN2 in the metabolic adaptations in response to the modulation of dietary protein has been seldom studied. Wild-type (WT) and liver GCN2-deficient (KO) mice were fed either a normo-protein diet, a low-protein diet, or a high-protein diet for 3 wk. During this period, body weight, food intake, and metabolic parameters were followed. In mice fed normo- and high-protein diets, GCN2 pathway in the liver is not activated in WT mice, leading to a similar metabolic profile with the one of KO mice. On the contrary, a low-protein diet activates GCN2 in WT mice, inducing FGF21 secretion. In turn, FGF21 maintains a high level of lipid oxidation, leading to a different postprandial oxidation profile compared with KO mice. Hepatic GCN2 controls FGF21 secretion under a low-protein diet and modulates a whole body postprandial oxidation profile.


2014 ◽  
Author(s):  
Chris J Airey ◽  
Phoebe J Smith ◽  
Joanna M Gould ◽  
Stephanie J Marfy-Smith ◽  
Tom P Fleming ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document