scholarly journals Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived from Human Stem Cells

Endocrinology ◽  
2021 ◽  
Author(s):  
Kim L Keen ◽  
Andrew J Petersen ◽  
Alexander G Figueroa ◽  
Benjamin I Fordyce ◽  
Jaeweon Shin ◽  
...  

Abstract Gonadotropin releasing hormone (GnRH) neurons in the hypothalamus play a key role in the regulation of reproductive function. In this study, we sought an efficient method for generating GnRH neurons from human embryonic and induced pluripotent stem cells (hESC and hiPSC, respectively). First, we found that exposure of primitive neuroepithelial cells, rather than neuroprogenitor cells, to FGF8, was more effective in generating GnRH neurons. Second, addition of kisspeptin to FGF8 further increased the efficiency rates of GnRH neurogeneration. Third, we generated a fluorescent marker m-Cherry labeled human embryonic GnRH cell line (mCh-hESC) using CRISPR-Cas9 targeting approach. Fourth, we examined physiological characteristics of GnRH (mCh-hESC) neurons: Similar to GnRH neurons in vivo, they released the GnRH peptide in a pulsatile manner at ~60 min intervals, GnRH release increased in response to high potassium, kisspeptin, estradiol and neurokinin B challenges, and injection of depolarizing current induced action potentials. Finally, we characterized developmental changes in transcriptomes of GnRH neurons using hESC, hiPSC, and mCh-hESC. The developmental pattern of transcriptomes was remarkably similar among the three cell lines. Collectively, human stem cell-derived GnRH neurons will be an important tool for establishing disease models to understand diseases, such as Idiopathic Hypothalamic Hypogonadism, and testing contraceptive drugs.

2019 ◽  
Author(s):  
Tea Soon Park ◽  
Ludovic Zimmerlin ◽  
Rebecca Evans-Moses ◽  
Justin Thomas ◽  
Jeffrey S. Huo ◽  
...  

ABSTRACTVascular regenerative therapies with conventional human induced pluripotent stem cells (hiPSC) currently remain limited by high interline variability of differentiation and poor efficiency for generating functionally transplantable vascular progenitors (VP). Here, we report the advantage of tankyrase inhibitor-regulated naïve hiPSC (N-hiPSC) for significantly improving vascular cell therapies. Conventional hiPSC reprogrammed from type-1 diabetic donor fibroblasts (DhiPSC) were stably reverted to naïve epiblast-like state with high functional pluripotency with a cocktail of LIF and three small molecules inhibiting the tankyrase, MEK, and GSK3β signaling pathways (LIF-3i). Naïve diabetic VP (N-DVP) differentiated from naïve DhiPSC (N-DhiPSC) expanded more efficiently, possessed higher proliferation, possessed more stable genomic integrity and displayed higher in vitro vascular functionality than primed diabetic VP (DVP) generated from isogenic conventional DhiPSC. Moreover, N-DVP survived, migrated, and engrafted in vivo into the deep vasculature of the neural retinal layers with significantly higher efficiencies than isogenic primed DVP in a murine model of ischemic retinopathy. Epigenetic analyses of CpG DNA methylation and histone configurations at developmental promoters of N-hiPSC revealed tight regulation of lineage-specific gene expression and a de-repressed naïve epiblast-like epigenetic state that was highly poised for multi-lineage transcriptional activation. We propose that reprogramming of patient donor cells to a tankyrase inhibitor-regulated N-hiPSC may more effectively erase epigenetic aberrations sustained from chronic diseases such as diabetes for subsequent regenerative therapies. More broadly, tankyrase inhibitor-regulated N-hiPSC represent a new class of human stem cells with high epigenetic plasticity, improved multi-lineage functionality, and potentially high impact for regenerative medicine.


Author(s):  
Prithiv K R Kumar

Renal failure is a major health problem. The mortality rate remain high despite of several therapies. The most complex of the renal issues are solved through stem cells. In this review, different mechanism for cure of chronic kidney injury along with cell engraftment incorporated into renal structures will be analysed. Paracrine activities of embryonic or induced Pluripotent stem cells are explored on the basis of stem cell-induced kidney regeneration. Several experiments have been conducted to advance stem cells to ensure the restoration of renal functions. More vigour and organised protocols for delivering stem cells is a possibility for advancement in treatment of renal disease. Also there is a need for pressing therapies to replicate the tissue remodelling and cellular repair processes suitable for renal organs. Stem cells are the undifferentiated cells that have the ability to multiply into several cell types. In vivo experiments on animal’s stem cells have shown significant improvements in the renal regeneration and functions of organs. Nevertheless more studies show several improvements in the kidney repair due to stem cell regeneration.


Author(s):  
Diana B. Sequeira ◽  
Ana Rafaela Oliveira ◽  
Catarina M. Seabra ◽  
Paulo J. Palma ◽  
Carlos Ramos ◽  
...  

Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
weina cui ◽  
lei ye ◽  
albert jang ◽  
qiang xiong ◽  
pengyuan zhang ◽  
...  

Rationale and Objective: Human induced pluripotent stem cells (hiPSCs) hold promise for myocardial repair following injury. Here, we investigated the functional impact and myocardial heterogeneity of bioenergetics using a porcine model of post infarction LV remodeling, and 2 dimensional chemical shift imaging (2D CSI) P-31 MR spectroscopy. Methods and Results: Ischemia-reperfusion (I/R) injury was surgically induced by occlusion distal LAD (OCCL) for 60 minutes in female Yorkshire farm swine (≈15kg), then randomly assigned to experimental groups: 1) 16 million human induced pluripotent stem cells (hiPSC) derived cardio myocytes (CMs), smooth muscle cells (SMC) and Endothelia cells (ECs) were directly myocardial injected through an epicardial fibrin patch (P+Cell, n= 4), 2) open patch (fibrin patch with no cell) were placed over the injury site (P w/o Cell, n=4). Size matched normal (n=9) and OCCL only (n=5) pigs were also studied. Four weeks after I/R, 2D CSI MRS studies were performed in a 9.4T/ 65 cm bore magnet. In vivo myocardial energetic mapping was achieved using 31 P 2D CSI. To measure the forward flux rate PCr to ATP, 2D CSI data were acquired with or without saturation on ATPγ resonance. I/R injury has a heterogeneous effect on LV myocardial bioenergetics. Myocardial creatine phosphate (PCr)/ATP ratio is significantly decreased in border zone (BZ) of the infarction than the myocardial areas remote from the scar (RZ) in cell treated and patch only groups (1.54+/- 0.05 vs 2.25 +/- 0.10, 1.49+/-0.07 vs 2.34 +/- 0.07, BZ vs RZ, p<0.05). The BZ PCr/ATP ratio is improved in the cell treated group compared with open patch group (1.71 +/- 0.05 vs. 1.54 +/- 0.05, p<0.05). The forward flux rate constant of PCr/ATP (k pcr→ATP ) in the border zone is slightly increased in cell treated group compared with patch only group (0.29 +/- 0.02 vs 0.22 +/- 0.04 , p<0.05) Conclusion: The approach of 2D CSI 31 P MRS can effectively map the heterogeneity of myocardial ATP flux rate via CK In Vivo porcine hearts. Postinfarction LV remodeling heart manifests pronounced heterogeneity in myocardial bioenergetics with most severe alterations in BZ. Cell therapy may effectively improve BZ myocardial bioenergetics.


2019 ◽  
Vol 20 (22) ◽  
pp. 5752 ◽  
Author(s):  
Heng Liang Tan ◽  
Andre Choo

Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). The application of pluripotent stem cells is divided into four main areas, namely: (i) regenerative therapy, (ii) the study and understanding of developmental biology, (iii) drug screening and toxicology and (iv) disease modeling. In this review, we describe a new opportunity for PSCs, the discovery of new biomarkers and generating antibodies against these biomarkers. PSCs are good sources of immunogen for raising monoclonal antibodies (mAbs) because of the conservation of oncofetal antigens between PSCs and cancer cells. Hence mAbs generated using PSCs can potentially be applied in two different fields. First, these mAbs can be used in regenerative cell therapy to characterize the PSCs. In addition, the mAbs can be used to separate or eliminate contaminating or residual undifferentiated PSCs from the differentiated cell product. This step is critical as undifferentiated PSCs can form teratomas in vivo. The mAbs generated against PSCs can also be used in the field of oncology. Here, novel targets can be identified and the mAbs developed as targeted therapy to kill the cancer cells. Conversely, as new and novel oncofetal biomarkers are discovered on PSCs, cancer mAbs that are already approved by the FDA can be repurposed for regenerative medicine, thus expediting the route to the clinics.


2020 ◽  
Author(s):  
Engi Ahmed ◽  
Mathieu Fieldes ◽  
Chloé Bourguignon ◽  
Joffrey Mianné ◽  
Aurélie Petit ◽  
...  

AbstractRationaleHighly reproducible in vitro generation of human bronchial epithelium from pluripotent stem cells is an unmet key goal for drug screening to treat lung diseases. The possibility of using induced pluripotent stem cells (hiPSC) to model normal and diseased tissue in vitro from a simple blood sample will reshape drug discovery for chronic lung, monogenic and infectious diseases.MethodsWe devised a simple and reliable method that drives a blood sample reprogrammed into hiPSC subsequently differentiated within 45 days into air-liquid interface bronchial epithelium (iALI), through key developmental stages, definitive-endoderm (DE) and Ventralized-Anterior-Foregut-Endoderm (vAFE) cells.ResultsReprogramming blood cells from one healthy and 3 COPD patients, and from skin-derived fibroblasts obtained in one PCD patient, succeeded in 100% of samples using Sendai viruses. Mean cell purity at DE and vAFE stages was greater than 80%, assessed by expression of CXCR4 and NKX2.1, avoiding the need of cell sorting. When transferred to ALI conditions, vAFE cells reliably differentiated within 4 weeks into bronchial epithelium with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells as found in vivo. Benchmarking all culture conditions including hiPSCs adaptation to single-cell passaging, cell density and differentiation induction timing allowed for consistently producing iALI bronchial epithelium from the five hiPSC lines.ConclusionsReliable reprogramming and differentiation of blood-derived hiPSCs into mature and functional iALI bronchial epithelium is ready for wider use and this will allow better understanding lung disease pathogenesis and accelerating the development of novel gene therapies and drug discovery.


Sign in / Sign up

Export Citation Format

Share Document