scholarly journals Functionally Selective Inhibition of the Oxytocin Receptor by Retosiban in Human Myometrial Smooth Muscle

Endocrinology ◽  
2020 ◽  
Vol 161 (2) ◽  
Author(s):  
Paul J Brighton ◽  
Michael J Fossler ◽  
Siobhan Quenby ◽  
Andrew M Blanks

Abstract Novel small molecule inhibitors of the oxytocin receptor (OTR) may have distinct pharmacology and mode of action when compared with first-generation oxytocin antagonists when used for the prevention of preterm birth. The aim was to determine the mechanism of action of small molecule OTR antagonists retosiban and epelsiban compared with the currently used peptide-based compound atosiban. Human myometrial samples were obtained at cesarean section and subjected to pharmacological manipulations to establish the effect of antagonist binding to OTR on downstream signaling. Retosiban antagonism of oxytocin action in human myometrium was potent, rapid, and reversible. Inhibition of inositol 1,4,5-trisphosphate (IP3) production followed single-site competitive binding kinetics for epelsiban, retosiban, and atosiban. Retosiban inhibited basal production of IP3 in the absence of oxytocin. Oxytocin and atosiban but not retosiban inhibited forskolin, and calcitonin stimulated 3′,5′-cyclic adenosine 5′-mono-phosphate (cAMP) production. Inhibition of cAMP was reversed by pertussis toxin. Oxytocin and atosiban, but not retosiban and epelsiban, stimulated extracellular regulated kinase (ERK)1/2 activity in a time- and concentration-dependent manner. Oxytocin and atosiban stimulated cyclo-oxygenase 2 activity and subsequent production of prostaglandin E2 and F2α. Prostaglandin production was inhibited by rofecoxib, pertussin toxin, and ERK inhibitor U0126. Oxytocin but not retosiban or atosiban stimulated coupling of the OTR to Gα q G-proteins. Oxytocin and atosiban but not retosiban stimulated coupling of the OTR to Gα i G-proteins. Retosiban and epelsiban demonstrate distinct pharmacology when compared with atosiban in human myometrial smooth muscle. Atosiban displays agonist activity at micromolar concentrations leading to stimulation of prostaglandin production.

2009 ◽  
Vol 297 (5) ◽  
pp. L984-L991 ◽  
Author(s):  
Yoshihiko Chiba ◽  
Shunsuke Sato ◽  
Motohiko Hanazaki ◽  
Hiroyasu Sakai ◽  
Miwa Misawa

Recent studies revealed an involvement of RhoA/Rho-kinase in the contraction of bronchial smooth muscle (BSM), and this pathway has now been proposed as a new target for asthma therapy. A posttranslational geranylgeranylation of RhoA is required for its activation. Thus selective inhibition of geranylgeranyltransferase may be a novel strategy for treatment of the BSM hyperresponsiveness in asthmatics. To test this hypothesis, we investigated the effect of a geranylgeranyltransferase inhibitor, GGTI-2133, on antigen-induced BSM hyperresponsiveness by using mice with experimental asthma. Mice were sensitized and repeatedly challenged with ovalbumin antigen. Animals also were treated with GGTI-2133 (5 mg/kg ip) once a day before and during the antigen inhalation period. Repeated antigen inhalation caused a BSM hyperresponsiveness to acetylcholine with the increased expressions of RhoA and the anti-farnesyl-positive 21-kDa proteins, probably geranylgeranylated RhoA. The in vivo GGTI-2133 treatments significantly inhibited BSM hyperresponsiveness induced by antigen exposure. In another series of experiments, BSM tissues isolated from the repeatedly antigen-challenged mice were cultured for 48 h in the absence or presence of GGTI-2133. Under these conditions, the putative geranylgeranylated RhoA was decreased in a GGTI-2133 concentration-dependent manner. The in vitro incubation with GGTI-2133 also inhibited BSM hyperresponsiveness induced by antigen exposure. These findings suggest that GGTI-2133 inhibits antigen-induced BSM hyperresponsiveness, probably by reducing downstream signal transduction of RhoA. Selective geranylgeranyltransferase inhibitors may be beneficial for the treatment of airway hyperresponsiveness, one of the characteristic features of allergic bronchial asthma.


2017 ◽  
Vol 41 (6) ◽  
pp. 2350-2362 ◽  
Author(s):  
Honghao Tan ◽  
Jun Lei ◽  
Lu Xue ◽  
Congli Cai ◽  
Qing-hua Liu ◽  
...  

Background/Aims: Recently, some small-molecule compounds that were designed for cancer therapy have acquired new roles in the treatment of pulmonary diseases. However, drug screening aimed at abnormal muscle contraction is still limited. TSU-68 is a potent, orally administered, small-molecule agent that can reduce the vascular endothelial growth factor (VEGF)-induced Ca2+ increase in endothelial cells. We questioned whether TSU-68 could also affect calcium influx and relax airway smooth muscle (ASM) cells. The current study aimed to investigate these effects and to explore the underlying mechanisms. Methods: The effects of TSU-68 on ASM cells were studied in mice using a series of biophysiological techniques, including force measurement and patch-clamp experiments. Results: TSU-68 inhibited high K+ or acetylcholine chloride (ACh)-induced pre-contracted mouse tracheal rings in a concentration-dependent manner. Further research demonstrated that the TSU-68-induced ASM relaxation was mediated by calcium, which was decreased by blocking voltage-dependent Ca2+ channels (VDCCs) and non-selective cation channels (NSCCs). Conclusion: Our data indicated that TSU-68 relaxes tense ASM by reducing the intracellular Ca2+ concentration through blocking VDCCs and NSCCs, which suggested that this small molecule might be useful in the treatment of abnormal smooth muscle.


1995 ◽  
Vol 312 (1) ◽  
pp. 151-158 ◽  
Author(s):  
C P Thomas ◽  
M J Dunn ◽  
R Mattera

The human leukaemic cell line K562 is a pluripotent stem cell with the potential to mature along a megakaryocytic or erythroid line. In these cells, thrombin and U46619 (9,11-dideoxy-9 alpha, 11 alpha-methanoepoxy prostaglandin F2 alpha), a thromboxane A2 analogue, increased intracellular Ca2+ in a rapid and concentration-dependent manner. The peak transient observed with both thrombin and U46619 was preserved upon stimulation in the absence of extracellular calcium and blunted with phorbol myristate acetate, suggestive of activation of phospholipase C. Short-term treatment with leupeptin abolished the calcium response to thrombin, but did not alter that to U46619. Both pertussis toxin (PT) and DMSO pretreatment inhibited thrombin- but not U46619-stimulated intracellular calcium elevation, indicating that these agonists signal through different G-proteins. Western blot analysis of crude membranes from K562 cells revealed the presence of G12 alpha and G13 alpha; the other known PT-substrates, Gi1 alpha and G0 alpha, were not detected. Consistent with this observation, ADP-ribosylation experiments revealed the presence of two PT substrates which co-migrated with human erythrocyte G12 alpha and G13 alpha. An antibody raised against Gq/11 alpha, a subfamily of G-protein alpha subunits unmodified by PT, specifically recognized 42 kDa protein(s) in K562 cells. PCR amplification of reverse-transcribed K562 RNA followed by DNA sequencing showed that these cells express messages for both Gq alpha and G11 alpha. Treatment of K562 cells with DMSO reduced the levels of thrombin receptor mRNA, without simultaneous changes in the expression of G12 alpha and G13 alpha. We have thus identified Ca(2+)-mobilizing agonists and related G-proteins in K562 cells, together with changes induced by DMSO in this signalling pathway.


2003 ◽  
Vol 99 (3) ◽  
pp. 646-651 ◽  
Author(s):  
Jingui Yu ◽  
Koji Ogawa ◽  
Yasuyuki Tokinaga ◽  
Yoshio Hatano

Background The Rho/Rho-kinase signaling pathway plays an important role in mediating Ca2+ sensitization of vascular smooth muscle. The effect of anesthetics on Rho/Rho-kinase-mediated vasoconstriction has not been determined to date. This study is designed to examine the possible inhibitory effects of sevoflurane on the Rho/Rho-kinase pathway by measuring guanosine 5'-[gamma-thio]triphosphate (GTP gamma S)-stimulated contraction and translocation of RhoA (one of the three Rho subtypes) and Rock-2 (one of the two Rho-kinase subtypes) from the cytosol to the membrane in rat aortic smooth muscle. Methods GTP gamma S-induced contraction of rat aortic endothelium-denuded rings was measured using an isometric force transducer, and GTP gamma S-stimulated membrane translocation of RhoA and Rock-2 in smooth muscle cells was detected with Western blotting in the presence and absence of sevoflurane. Results GTP gamma S (10(-4) m) induced a sustained contraction, which was significantly inhibited by the Rho-kinase inhibitor, Y27632 (3 x 10(-6) m). Before treatment with GTP gamma S, RhoA and Rock-2 were detected primarily in the cytosolic fraction. GTP gamma S (10(-4) m) stimulated the translocation of RhoA and Rock-2 from the cytosol to the membrane, which was sustained for more than 60 min. Sevoflurane (1.7, 3.4, and 5.1%) concentration dependently inhibited the GTP gamma S-induced constriction of rat aortic smooth muscle with a reduction of constriction of 52-75% (P < 0.01, n = 8), and attenuated the translocation of RhoA and Rock-2 by 31-66% and 34-78%, respectively (P < 0.05-0.01, respectively; n = 4). Conclusion The current findings show that sevoflurane depresses the GTP gamma S-stimulated contraction and translocation of both Rho and Rho-kinase from the cytosol in a concentration-dependent manner, indicating that sevoflurane is able to inhibit vasoconstriction mediated by the Rho/Rho-kinase pathway in rat aortic smooth muscle.


1989 ◽  
Vol 257 (4) ◽  
pp. C607-C611 ◽  
Author(s):  
A. Wallnofer ◽  
C. Cauvin ◽  
T. W. Lategan ◽  
U. T. Ruegg

ATP stimulated 45Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating 45Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce 45Ca2+ influx. Stimulation of 45Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced 45Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, and Mg2+) were able to inhibit both agonist- and depolarization-induced 45Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated 45Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.


1984 ◽  
Vol 57 (1) ◽  
pp. 129-134 ◽  
Author(s):  
E. H. Walters ◽  
P. M. O'Byrne ◽  
L. M. Fabbri ◽  
P. D. Graf ◽  
M. J. Holtzman ◽  
...  

Contractile responses of canine tracheal smooth muscle to electrical field stimulation diminished over a 2-h period of incubation. However, addition of indomethacin (10(-5) M) for a similar time not only prevented this inhibition of contractile response, but actually markedly increased the response to electrical field stimulation, suggesting that prostaglandins were responsible for the time-dependent inhibition. Measured prostaglandin E2 increased in the tissue bath over 2 h in control tissues. Addition of prostaglandin E2 to the tissue produced similar inhibition of contractile responses to electrical field stimulation in a concentration-dependent manner. In contrast, incubation alone, treatment with indomethacin, or addition of prostaglandin E2 had little, if any, effect on contractions induced by acetylcholine. We conclude that the release of prostaglandins from canine tracheal smooth muscle that occurs with time has a predominantly inhibitory effect on cholinergic neurotransmission at a prejunctional site.


1995 ◽  
Vol 268 (1) ◽  
pp. L47-L55 ◽  
Author(s):  
A. P. Abela ◽  
E. E. Daniel

In canine bronchi bathed in 10(-6) M indomethacin (IDM), prostaglandin (PG) E2 inhibited electrical field stimulation (EFS)- and acetylcholine (ACh)-mediated contractions and excitatory junction potentials (EJP) in a concentration-dependent manner without altering the resting membrane potential. EFS-induced EJPs were abolished at 10(-7) M PGE2, which shifted responses to ACh 10-fold rightward. Thus PGE2 predominantly inhibited the release of ACh and secondarily decreased smooth muscle response to ACh. U-46619, an analogue of thromboxane A2 (TxA2), initiated tetrodotoxin- and atropine-insensitive contractions in a concentration-dependent manner. U-46619 (10(-9) M) did not alter significantly EFS- or ACh-stimulated contractions and potentiated EFS amplitude of EJPs without depolarizing muscle cells. Either prejunctional activation of ACh release by TxA2 or postjunctional potentiation of the response to ACh can explain these findings. U-46619 (<or = 10(-8) M) depolarized the membrane potential, initiating oscillations accompanied by a large contraction. Addition of 10(-8) M nitrendipine, but not tetraethylammonium (25 mM), blocked the oscillations selectively. Other prostanoids (PGD2, PGI2, and PGF2 alpha) had no significant effects on canine bronchi. In the absence of IDM, PGE2 accumulated, EFS contractions decreased with time, and EJPs disappeared. We conclude that in canine bronchi PGE2 predominantly inhibits ACh release and endogenous PGE2 acts similarly, whereas TxA2 excites, probably at postjunctional sites.


1997 ◽  
Vol 273 (1) ◽  
pp. F129-F135 ◽  
Author(s):  
J. M. Arthur ◽  
G. P. Collinsworth ◽  
T. W. Gettys ◽  
L. D. Quarles ◽  
J. R. Raymond

Extracellular cations such as Ca2+ stimulate a G protein-coupled, cation-sensing receptor (CaR). We used microphysiometry to determine whether an extracellular cation-sensing mechanism exists in Madin-Darby canine kidney (MDCK) cells. The CaR agonists Ca2+ and Gd3+ caused cellular activation in a concentration-dependent manner. mRNA for the CaR was identified by reverse transcription and polymerase chain reaction (PCR) using nested CaR-specific primers, identification of an appropriately located restriction site, and sequencing of the subcloned fragment obtained by PCR. G protein activation was evaluated using the GTP photoaffinity label [alpha-32P]GTP azidoanalide (AA-GTP). After stimulation with Gd3+ and cross-linking, plasma membranes were solubilized and immunoprecipitated with antisera specific for Gq/11 alpha and Gi alpha family members. Gd3+ increased incorporation of AA-GTP into Gq/11 alpha precipitates by 146 +/- 48% and into G alpha i-2 and G alpha i-3 to a lesser extent but not into G alpha i-1. Direct effects of Gd3+ on the G proteins were ruled out using partially purified mammalian G proteins expressed in Escherichia coli or Sf9 cells. We conclude that MDCK cells possess a cell-surface CaR that activates Gq/11 alpha, G alpha i-2, and G alpha i-3 but not G alpha i-1.


1998 ◽  
Vol 275 (3) ◽  
pp. H1002-H1010 ◽  
Author(s):  
Pin-Lan Li ◽  
Ai-Ping Zou ◽  
William B. Campbell

The enzymatic pathway responsible for the production and metabolism of cyclic ADP-ribose (cADP-R) in small bovine coronary arteries was characterized, and the role of cADP-R and ADP-ribose (ADP-R) in the regulation of the activity of large-conductance Ca2+-activated K+(KCa) channels was determined in vascular smooth muscle cells (SMC) prepared from these vessels. We found that cADP-R and ADP-R were produced when the coronary arterial homogenates were incubated with 1 mM β-NAD. The time course of the enzyme reactions showed that the maximal conversion rate (1.37 ± 0.03 nmol ⋅ min−1 ⋅ mg protein−1) of β-NAD to cADP-R was reached after 3 min of incubation. As incubation time was prolonged, the production of ADP-R was increased to a maximal rate of 3.66 ± 0.03 nmol ⋅ min−1 ⋅ mg protein−1, whereas cADP-R production decreased. Incubation of the homogenate with cADP-R produced a time-dependent increase in the synthesis of ADP-R. Comparison of coronary arterial microsomes with cytosols shows that the production of both cADP-R and ADP-R in microsomes was significantly greater. In excised inside-out membrane patches of single coronary SMC, the KCa channels were activated when β-NAD, the precursor for both cADP-R and ADP-R, was applied to the internal surface. This effect of β-NAD may be associated with the production of ADP-R, because the KCa-channel activity was increased by ADP-R in a concentration-dependent manner. The open-state probability of the KCa channels increased from a control level of 0.08 ± 0.03 to 0.17 ± 0.05 even at the lowest ADP-R concentration (0.1 μM) studied. However, cADP-R reduced the KCa-channel activity, and the threshold concentration of cADP-R that decreased the average channel activity of the KCa channels was 1 μM. These results provide evidence that cADP-R is produced and metabolized in the coronary arterial smooth muscle and that a cADP-R/ADP-R pathway participates in the control of the KCa-channel activity in vascular SMC.


2002 ◽  
Vol 282 (2) ◽  
pp. G226-G232 ◽  
Author(s):  
Hirotada Akiho ◽  
Patricia Blennerhassett ◽  
Yikang Deng ◽  
Stephen M. Collins

T helper 2 (Th2) cytokines interleukin (IL)-4 and IL-13, which activate signal transducer and activator of transcription 6 (STAT6) are expressed in the muscularis externa during nematode infection and are candidate mediators of the associated hypercontractility. To determine the locus of action of these cytokines, we examined the IL-4- and IL-13-induced hypercontractility of the isolated muscle cells from STAT6 +/+ and STAT6 −/− mice. We compared the results with cells isolated from Trichinella spiralis-infected STAT6 +/+ and STAT6 −/− mice. Carbamylcholine chloride (Carbachol) induced the contraction of jejunal muscle cells in a concentration-dependent manner maximal contraction (Rmax26.7 ± 1.9%). Cells from T. spiralis-infected STAT6 −/− mice showed the hypertrophy (cell lengths 41.4 ± 0.8 to 89.0 ± 8.7 μm) and hypercontractility (Rmax37.5 ± 1.3%) induced by infection. IL-4Rα mRNA was detected in dispersed smooth muscle cells. Incubation of longitudinal muscle-myenteric plexus (LMMP) with IL-4 and IL-13 enhanced Carbachol-induced muscle contraction (Rmax35.5 ± 1.9 and 32.4 ± 2.9%, respectively). Incubation of LMMP from STAT6 −/− mice with IL-4 did not enhance the contraction. The hypercontractility in T. spiralis-infected mice was attenuated in STAT6 −/− mice ( P < 0.02). These results indicate both IL-4 and IL-13 induce hypercontractility of muscle cells via the STAT6 pathway, and this is the basis for hypercontractility observed in T. spiralis-infected mice.


Sign in / Sign up

Export Citation Format

Share Document