scholarly journals Leptin: Is It Thermogenic?

2019 ◽  
Vol 41 (2) ◽  
pp. 232-260 ◽  
Author(s):  
Alexander W Fischer ◽  
Barbara Cannon ◽  
Jan Nedergaard

Abstract Animals that lack the hormone leptin become grossly obese, purportedly for 2 reasons: increased food intake and decreased energy expenditure (thermogenesis). This review examines the experimental evidence for the thermogenesis component. Analysis of the data available led us to conclude that the reports indicating hypometabolism in the leptin-deficient ob/ob mice (as well as in the leptin-receptor-deficient db/db mice and fa/fa rats) derive from a misleading calculation artefact resulting from expression of energy expenditure per gram of body weight and not per intact organism. Correspondingly, the body weight-reducing effects of leptin are not augmented by enhanced thermogenesis. Congruent with this, there is no evidence that the ob/ob mouse demonstrates atrophied brown adipose tissue or diminished levels of total UCP1 mRNA or protein when the ob mutation is studied on the inbred C57BL/6 mouse background, but a reduced sympathetic nerve activity is observed. On the outbred “Aston” mouse background, brown adipose tissue atrophy is seen, but whether this is of quantitative significance for the development of obesity has not been demonstrated. We conclude that leptin is not a thermogenic hormone. Rather, leptin has effects on body temperature regulation, by opposing torpor bouts and by shifting thermoregulatory thresholds. The central pathways behind these effects are largely unexplored.

2017 ◽  
Vol 313 (6) ◽  
pp. E731-E736 ◽  
Author(s):  
Wenjuan Wang ◽  
Xiangzhi Meng ◽  
Chun Yang ◽  
Dongliang Fang ◽  
Xuemeng Wang ◽  
...  

Loss of body weight and fat mass is one of the nonmotor symptoms of Parkinson’s disease (PD). Weight loss is due primarily to reduced energy intake and increased energy expenditure. Whereas inadequate energy intake in PD patients is caused mainly by appetite loss and impaired gastrointestinal absorption, the underlying mechanisms for increased energy expenditure remain largely unknown. Brown adipose tissue (BAT), a key thermogenic tissue in humans and other mammals, plays an important role in thermoregulation and energy metabolism; however, it has not been tested whether BAT is involved in the negative energy balance in PD. Here, using the 6-hydroxydopamine (6-OHDA) rat model of PD, we found that the activity of sympathetic nerve (SN), the expression of Ucp1 in BAT, and thermogenesis were increased in PD rats. BAT sympathetic denervation blocked sympathetic activity and decreased UCP1 expression in BAT and attenuated the loss of body weight in PD rats. Interestingly, sympathetic denervation of BAT was associated with decreased sympathetic tone and lipolysis in retroperitoneal and epididymal white adipose tissue. Our data suggeste that BAT-mediated thermogenesis may contribute to weight loss in PD.


1993 ◽  
Vol 264 (1) ◽  
pp. R109-R115 ◽  
Author(s):  
M. Egawa ◽  
H. Yoshimatsu ◽  
G. A. Bray

beta-Endorphin was injected into the third cerebroventricle to investigate its effects on sympathetic nerve activity to interscapular brown adipose tissue (IBAT) in rats. Multiunit discharges of sympathetic nerves to IBAT were recorded electrophysiologically in anesthetized rats. The intracerebroventricular injection of beta-endorphin (125, 250, and 500 pmol/rat in 10 microliters) suppressed sympathetic nerve activity in a dose-related fashion (-23.9 +/- 20.4, -38.7 +/- 7.1, and -66.7 +/- 7.6% 30 min after injection) compared with preinjection baseline. N-acetyl-beta-endorphin (250 pmol) had no effect on sympathetic nerve activity to IBAT. The intraperitoneal injection of naloxone (5.0 mg/rat) did not affect sympathetic nerve activity, but preinjection of naloxone inhibited the suppressive effect of intracerebroventricular injection of beta-endorphin (250 pmol). We conclude that the intracerebroventricular administration of beta-endorphin suppressed the sympathetic nerve activity to IBAT through opioid receptors. The results of this experiment are consistent with the hypothesis that beta-endorphin has a reciprocal effect on food intake and the sympathetic nervous system.


Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2744-2748 ◽  
Author(s):  
Tohru Yasuda ◽  
Takayuki Masaki ◽  
Tetsuya Kakuma ◽  
Masahide Hara ◽  
Tomoko Nawata ◽  
...  

Abstract This study examined how orexin regulates the activity of the sympathetic nerves that innervate brown adipose tissue (BAT) in rats. Infusion of orexin A at a dose of 0.3 nmol into the third cerebral ventricle decreased BAT sympathetic nerve activity, compared with the effect of PBS (P < 0.05), whereas infusion of orexin B at the same dose caused a significant increase (P < 0.05). Pretreatment with a third cerebral ventricle injection of 2.24 μmol/kg α-fluoromethylhistidine, an irreversible inhibitor of the histamine-synthesizing enzyme histidine decarboxylase, attenuated the orexin B-induced response of BAT sympathetic nerve activity, but not that induced by orexin A. These results indicate that orexins may regulate both BAT energy expenditure and thermogenesis through their dual effects on sympathetic nerve activity. In particular, orexin B regulates BAT sympathetic nerve activity via neuronal histamine in the hypothalamus.


2007 ◽  
Vol 144 (1-3) ◽  
pp. 62-71 ◽  
Author(s):  
Mamoru Tanida ◽  
Hitoshi Gotoh ◽  
Hiroyuki Taniguchi ◽  
Hiroto Otani ◽  
Jiao Shen ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A541-A541
Author(s):  
Ekaterina Filatov ◽  
Alex P Rudecki ◽  
Alina-Geta Constantin ◽  
Sarah Louise Gray

Abstract Adaptive thermogenesis in brown adipose tissue is stimulated by the sympathetic nervous system (SNS) in response to cold stress. Using retrograde viral transneuronal tract tracers, previous studies have identified that the paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), and median preoptic nucleus (MnPO) contain neurons that are part of sympathetic outflow tracts to brown adipose tissue, presumptively involved in SNS stimulation of interscapular brown adipose tissue (iBAT). Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a peptide hormone known to regulate energy homeostasis, acting in both the central (CNS) and peripheral nervous system (PNS). Mice lacking PACAP have impaired adrenergic-induced thermogenesis and a cold-sensitive phenotype. In the CNS, PACAP is highly expressed in the VMH, MnPO, and PVN of the hypothalamus. Injection of PACAP into the VMN increased core body temperature and sympathetic nerve activity to brown adipose tissue. While these studies show exogenous PACAP can activate sympathetic outflow tracts to brown adipose tissue, they do not confirm that endogenously expressed PACAP induces sympathetic nerve activity as an adaptive mechanism to cold stress, or if sympathetic outflow tracts originating in the hypothalamus express PACAP. We hypothesize that PACAP is expressed in neurons of sympathetic outflow tracts originating in the hypothalamus. To test this hypothesis, PACAP-eGFP transgenic mice were injected with the retrograde neural tracer, pseudorabies virus tagged with β-galactosidase (β-gal, PRV-BaBlu), in iBAT where postganglionic nerves innervate the tissue. Five-days post-infection, animals were culled, brains removed and cryosectioned. Neurons positive for green fluorescent protein (eGFP) and/or β-gal immunoreactivity (ir) were identified by immunohistochemistry in serial coronal and sagittal brain cryo-sections. Co-occurrence of eGFP-ir and β-gal-ir, inferred PACAP expressing neurons present in sympathetic outflow tracts (ImageJ). Co-occurrence was identified in several structures in the hypothalamus and thalamus. In conclusion, this study presents neuroanatomical evidence for populations of PACAPinergic neurons in the hypothalamus that are part of sympathetic outflow tracts to brown adipose tissue, providing further evidence of a central role for PACAP in regulating energy homeostasis.


Sign in / Sign up

Export Citation Format

Share Document