intact organism
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Robert C. Blake ◽  
Amit Nautiyal ◽  
Kayla A. Smith ◽  
Noelle N. Walton ◽  
Brealand Pendleton ◽  
...  

Ferrimicrobium acidiphilum is a Gram-positive member of the Actinobacteria phylum that can respire aerobically or anaerobically with soluble Fe(II) or Fe(III), respectively, in sulfuric acid at pH 1.5. Cyclic voltammetry measurements using intact F. acidiphilum at pH 1.5 produced fully reversible voltammograms that were highly reproducible. The maximum current observed with the anodic peak was considerably less than was the maximum current observed with the cathodic peak. This difference was attributed to the competition between the platinum electrode and the soluble oxygen for the available electrons that were introduced by the cathodic wave into this facultative aerobic organism. The standard reduction potential of the intact organism was determined to be 786 mV vs. the standard hydrogen electrode, slightly more positive than that of 735 mV that was determined for soluble iron at pH 1.5 using the same apparatus. Chronocoulometry measurements conducted at different cell densities revealed that the intact organism remained in close proximity to the working electrode during the measurement, whereas soluble ionic iron did not. When the cyclic voltammetry of intact F. acidiphilum was monitored using an integrating cavity absorption meter, the only small changes in absorbance that were detected were consistent with the participation of a cellular cytochrome with reduced absorbance peaks at 448 and 605 nm. The cytochrome that participated in the exchange of electrons between the intact organism and extracellular solid electrodes like platinum was the same cytochrome whose oxidation was previously shown to be rate-limiting when the organism respired aerobically on extracellular soluble iron.


2021 ◽  
Vol 12 ◽  
Author(s):  
Craig A. Lygate

In order to fully understand gene function, at some point, it is necessary to study the effects in an intact organism. The creation of the first knockout mouse in the late 1980’s gave rise to a revolution in the field of integrative physiology that continues to this day. There are many complex choices when selecting a strategy for genetic modification, some of which will be touched on in this review, but the principal focus is to highlight the potential problems and pitfalls arising from the interpretation of in vivo cardiac phenotypes. As an exemplar, we will scrutinize the field of cardiac energetics and the attempts to understand the role of the creatine kinase (CK) energy buffering and transport system in the intact organism. This story highlights the confounding effects of genetic background, sex, and age, as well as the difficulties in interpreting knockout models in light of promiscuous proteins and metabolic redundancy. It will consider the dose-dependent effects and unintended consequences of transgene overexpression, and the need for experimental rigour in the context of in vivo phenotyping techniques. It is intended that this review will not only bring clarity to the field of cardiac energetics, but also aid the non-expert in evaluating and critically assessing data arising from in vivo genetic modification.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Gaurav Bajpai ◽  
Daria Amiad Pavlov ◽  
Dana Lorber ◽  
Talila Volk ◽  
Samuel Safran

Intact-organism imaging of Drosophila larvae reveals and quantifies chromatin-aqueous phase separation. The chromatin can be organized near the lamina layer of the nuclear envelope, conventionally fill the nucleus, be organized centrally, or as a wetting droplet. These transitions are controlled by changes in nuclear volume and the interaction of chromatin with the lamina (part of the nuclear envelope) at the nuclear periphery. Using a simple polymeric model that includes the key features of chromatin self-attraction and its binding to the lamina, we demonstrate theoretically that it is the competition of these two effects that determines the mode of chromatin distribution. The qualitative trends as well as the composition profiles obtained in our simulations compare well with the observed intact-organism imaging and quantification. Since the simulations contain only a small number of physical variables we can identify the generic mechanisms underlying the changes in the observed phase separations.


2020 ◽  
Author(s):  
Gaurav Bajpai ◽  
Daria Amiad-Pavlov ◽  
Dana Lorber ◽  
Talila Volk ◽  
Samuel Safran

AbstractIntact-organism imaging of Drosophila larvae reveals and quantifies chromatin-aqueous phase separation. The chromatin can be organized near the lamina layer of the nuclear envelope, conventionally fill the nucleus, be organized centrally, or as a wetting droplet. These transitions are controlled by changes in nuclear volume and the interaction of chromatin with the lamina (part of the nuclear envelope) at the nuclear periphery. Using a simple polymeric model that includes the key features of chromatin self-attraction and its binding to the lamina, we demonstrate theoretically that it is the competition of these two effects that determines the mode of chromatin distribution. The qualitative trends as well as the compositional profiles obtained in our simulations compare well with the observed intact-organism imaging and quantification. Since the simulations contain only a small number of physical variables we can identify the generic mechanisms underlying the changes in the observed phase separations.


2020 ◽  
Vol 86 (22) ◽  
Author(s):  
Robert C. Blake ◽  
Jessie J. Guidry ◽  
Micah D. Anthony ◽  
Bhupal Ban ◽  
Kayla A. Smith ◽  
...  

ABSTRACT Proteins that oxidize extracellular substrates in Gram-positive bacteria are poorly understood. Ferrimicrobium acidiphilum is an actinobacterium that respires aerobically on extracellular ferrous ions at pH 1.5. In situ absorbance measurements were conducted on turbid suspensions of intact Fm. acidiphilum using an integrating cavity absorption meter designed for that purpose. Initial velocity kinetic studies monitored the appearance of product ferric ions in the presence of catalytic quantities of cells. Cell-catalyzed iron oxidation obeyed the Michaelis-Menten equation with Km and Vmax values of 71 μM and 0.29 fmol/min/cell, respectively. Limited-turnover kinetic studies were conducted with higher concentrations of cells to detect and monitor changes in the absorbance properties of cellular redox proteins when the cells were exposed to limited quantities of soluble reduced iron. A single a-type cytochrome with reduced absorbance peaks at 448 and 605 nm was the only redox-active chromophore that was visible as the cells respired aerobically on iron. The reduced cytochrome 605 exhibited mathematical and correlational properties that were consistent with the hypothesis that oxidation of the cytochrome constituted the rate-limiting step in the aerobic respiratory process, with a turnover number of 35 ± 2 s−1. Genomic and proteomic analyses showed that Fm. acidiphilum could and did express only two a-type heme copper terminal oxidases. Cytochrome 605 was associated with the terminal oxidase gene that is located between nucleotides 31,090 and 33,039, inclusive, in the annotated circular genome of this bacterium. IMPORTANCE The identities and functions of proteins involved in aerobic respiration on extracellular ferrous ions at acidic pH are poorly understood in the four phyla of Gram-positive eukaryotes and archaea where such activities occur. In situ absorbance measurements were conducted on Fm. acidiphilum as it respired on extracellular iron using an integrating cavity absorption meter that permitted accurate optical measurements in turbid suspensions of the intact bacterium under physiological conditions. The significance of these measurements is that they permitted a direct spectrophotometric examination of the extents and rates of biological electron transfer events in situ under noninvasive physiological conditions without disrupting the complexity of the live cellular environment. One thing is certain: one way to understand how a protein functions in an intact organism is to actually observe that protein as it functions in the intact organism. This paper provides an example of just such an observation.


2019 ◽  
Vol 41 (2) ◽  
pp. 232-260 ◽  
Author(s):  
Alexander W Fischer ◽  
Barbara Cannon ◽  
Jan Nedergaard

Abstract Animals that lack the hormone leptin become grossly obese, purportedly for 2 reasons: increased food intake and decreased energy expenditure (thermogenesis). This review examines the experimental evidence for the thermogenesis component. Analysis of the data available led us to conclude that the reports indicating hypometabolism in the leptin-deficient ob/ob mice (as well as in the leptin-receptor-deficient db/db mice and fa/fa rats) derive from a misleading calculation artefact resulting from expression of energy expenditure per gram of body weight and not per intact organism. Correspondingly, the body weight-reducing effects of leptin are not augmented by enhanced thermogenesis. Congruent with this, there is no evidence that the ob/ob mouse demonstrates atrophied brown adipose tissue or diminished levels of total UCP1 mRNA or protein when the ob mutation is studied on the inbred C57BL/6 mouse background, but a reduced sympathetic nerve activity is observed. On the outbred “Aston” mouse background, brown adipose tissue atrophy is seen, but whether this is of quantitative significance for the development of obesity has not been demonstrated. We conclude that leptin is not a thermogenic hormone. Rather, leptin has effects on body temperature regulation, by opposing torpor bouts and by shifting thermoregulatory thresholds. The central pathways behind these effects are largely unexplored.


2019 ◽  
Author(s):  
James H. Thierer ◽  
Stephen C. Ekker ◽  
Steven A. Farber

ABSTRACTApolipoprotein-B (APOB) is the structural component of atherogenic lipoproteins, lipid-rich particles that drive atherosclerosis by accumulating in the vascular wall. As atherosclerotic cardiovascular disease is the leading cause of death worldwide, there is an urgent need to develop new strategies to prevent lipoproteins from causing vascular damage. Here we report the LipoGlo system, which uses a luciferase enzyme (NanoLuc) fused to ApoB to monitor several key determinants of lipoprotein atherogenicity including particle abundance, size, and localization. Using LipoGlo, we are able to comprehensively characterize the lipoprotein profile of individual larval zebrafish and collect the first images of atherogenic lipoprotein localization in an intact organism. We discover multiple unexpected extravascular lipoprotein localization patterns, as well as identifypla2g12bas a potent regulator of lipoprotein size. ApoB-fusion proteins thus represent a uniquely sensitive and specific approach to study atherogenic lipoproteins and their genetic and small molecule modifiers.


2016 ◽  
Vol 8 (10) ◽  
pp. 147
Author(s):  
Nagwa Elnwishy ◽  
Nada Sedky

<p>Endocrine disruptors are defined as exogenous agents that alter the function of endocrine system, which in turn, causes adverse health effects in an intact organism or its progeny. Of these compounds, 17Beta-estradiol is of primary importance, since it is physiologically present in both men and women, as well as, being produced synthetically as a component in some pharmaceutical products. Once it reaches the aquatic environment through domestic sewage, ground water and streams, it makes a serious threat to the aquatic life. The review tackles the biological significance of these compounds as well as the danger that they present to the surrounding environment, areas at which these compounds have been detected worldwide, the methods used in detection and fundamentally significant solutions to get rid of this hazard using different methods such as; the bioremediation process.</p>


Author(s):  
David Ferster

Patch clamp recording in vivo allows an investigator to study intracellular membrane potentials in an intact organism (as opposed to cells in culture or acute brain slices). This technique is a reliable method of obtaining high-quality intracellular recordings from neurons, regardless of their size, in several parts of the mammalian brain. This chapter will describe the principles and practice of performing patch clamp experiments in vivo, beginning with a brief history of the technological developments that have made this technique possible.


Sign in / Sign up

Export Citation Format

Share Document