scholarly journals High-Resolution Peripheral Quantitative Computed Tomographic Imaging of Cortical and Trabecular Bone Microarchitecture in Patients with Type 2 Diabetes Mellitus

2010 ◽  
Vol 95 (11) ◽  
pp. 5045-5055 ◽  
Author(s):  
Andrew J. Burghardt ◽  
Ahi S. Issever ◽  
Ann V. Schwartz ◽  
Kevin A. Davis ◽  
Umesh Masharani ◽  
...  
2017 ◽  
Vol 20 (1) ◽  
pp. 22-27
Author(s):  
Tatiana A. Grebennikova ◽  
Zhanna E. Belaya

Type 2 diabetes mellitus (T2DM) is associated with higher fracture risk but, better bone mineral density (BMD). Alteration of the skeletal material or microstructure may be an underlying mechanism for the discrepancy between BMD and fracture risk in diabetes. The trabecular bone score has been proposed as an indirect measurement of bone microarchitecture with the routine dual energy absorptiometry.  We present a clinical case of diagnosis and treatment of osteoporosis associated with T2DM in patient with a low-trauma fracture and concomitant endocrine disorder.


Author(s):  
Ponce Maria Hayon ◽  
Laguna Mª del Carmen Serrano ◽  
Perez Maria Dolores Aviles ◽  
Beatriz Garcia Fontana ◽  
Sheila Gonzalez Salvatierra ◽  
...  

2020 ◽  
Vol 103 (11) ◽  
pp. 1131-1137

Background: When compared to people without type 2 diabetes mellitus (T2DM), people with T2DM have an increase in fracture risk despite having higher bone mineral density (BMD). Many studies in Caucasians demonstrated that trabecular bone score (TBS) is lower in people with T2DM than those without. The utility of TBS as a fracture risk assessment tool in Asians with T2DM is currently unclear. Objective: To compared lumbar spine (LS) BMD and TBS in Thais with or without T2DM and investigate the correlation between TBS and hemoglobin A1c (HbA1c) and diabetes duration in participants with T2DM. Materials and Methods: The present study was a cross-sectional study that included 97 participants with T2DM (37 men and 60 women) and 342 participants without T2DM (174 men and 168 women). LS-BMD and TBS were obtained. Results: Men and women with T2DM were older and had higher body mass index (BMI). Men with T2DM had significant higher LS-BMD (1.051±0.166 versus 0.972±0.125, p=0.009) and non-significant lower TBS (1.333±0.084 versus 1.365±0.096, p=0.055) than those without. Similarly, women with T2DM had significant higher LS-BMD (0.995±0.155 versus 0.949±0.124, p=0.021) and lower TBS (1.292±0.105 versus 1.382±0.096, p<0.001). After adjusting for age and BMI, T2DM predicted higher BMD in men (p<0.001), but not in women (p=0.143). T2DM was not associated with TBS after adjusting for age and BMI in both genders (p=0.403 and p=0.151 in men and women, respectively). TBS did not correlate with HbA1c in both genders. However, TBS was non-significantly associated with diabetes duration in women (p=0.073), but not in men (p=0.639). Conclusion: T2DM significantly predicted higher LS-BMD only in men and was not independently associated with TBS in both genders. These data highlighted that, in T2DM, there was some variation in the clinical usefulness of BMD and TBS in predicting osteoporotic fractures with regard to clinical characteristic of participants. Keywords: Bone mineral density, Type 2 diabetes mellitus, Trabecular bone score


2018 ◽  
Vol 7 (11) ◽  
pp. 1186-1195 ◽  
Author(s):  
Tingting Jia ◽  
Ya-nan Wang ◽  
Dongjiao Zhang ◽  
Xin Xu

Diabetes-induced advanced glycation end products (AGEs) overproduction would result in compromised osseointegration of titanium implant and high rate of implantation failure. 1α,25-dihydroxyvitamin D3 (1,25VD3) plays a vital role in osteogenesis, whereas its effects on the osseointegration and the underlying mechanism are unclear. The purpose of this study was to investigate that 1,25VD3 might promote the defensive ability of osseointegration through suppressing AGEs/RAGE in type 2 diabetes mellitus. In animal study, streptozotocin-induced diabetic rats accepted implant surgery, with or without 1,25VD3 intervention for 12 weeks. After killing, the serum AGEs level, bone microarchitecture and biomechanical index of rats were measured systematically. In vitro study, osteoblasts differentiation capacity was analyzed by alizarin red staining, alkaline phosphatase assay and Western blotting, after treatment with BSA, AGEs, AGEs with RAGE inhibitor and AGEs with 1,25VD3. And the expression of RAGE protein was detected to explore the mechanism. Results showed that 1,25VD3 could reverse the impaired osseointegration and mechanical strength, which possibly resulted from the increased AGEs. Moreover, 1,25VD3 could ameliorate AGEs-induced damage of cell osteogenic differentiation, as well as downregulating the RAGE expression. These data may provide a theoretical basis that 1,25VD3 could work as an adjuvant treatment against poor osseointegration in patients with type 2 diabetes mellitus.


2019 ◽  
Vol 73 (5) ◽  
pp. e13347 ◽  
Author(s):  
Felicia Baleanu ◽  
Pierre Bergmann ◽  
Anne Sophie Hambye ◽  
Carole Dekelver ◽  
Laura Iconaru ◽  
...  

2017 ◽  
Author(s):  
Maria Dolores Aviles Perez ◽  
Antonia Garcia Martin ◽  
Cristina Novo Rodriguez ◽  
Rafael Nieto Serrano ◽  
Elena Torres Vela ◽  
...  

2014 ◽  
Vol 113 (5) ◽  
pp. 765-771 ◽  
Author(s):  
Gyung-Min Park ◽  
Seung-Whan Lee ◽  
Young-Rak Cho ◽  
Chan Joon Kim ◽  
Jung Sun Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document