scholarly journals Increased Marrow Adiposity in Premenopausal Women with Idiopathic Osteoporosis

2012 ◽  
Vol 97 (8) ◽  
pp. 2782-2791 ◽  
Author(s):  
Adi Cohen ◽  
David W. Dempster ◽  
Emily M. Stein ◽  
Thomas L. Nickolas ◽  
Hua Zhou ◽  
...  

Abstract Context: We have previously reported that premenopausal women with idiopathic osteoporosis based on fractures (IOP) or idiopathic low bone mineral density (ILBMD) exhibit markedly reduced bone mass, profoundly abnormal trabecular microstructure, and significant deficits in trabecular bone stiffness. Bone remodeling was heterogeneous. Those with low bone turnover had evidence of osteoblast dysfunction and the most marked deficits in microstructure and stiffness. Objective: Because osteoblasts and marrow adipocytes derive from a common mesenchymal precursor and excess marrow fat has been implicated in the pathogenesis of bone fragility in anorexia nervosa, glucocorticoid excess, and thiazolidinedione exposure, we hypothesized that marrow adiposity would be higher in affected women and inversely related to bone mass, microarchitecture, bone formation rate, and osteoblast number. Design: We analyzed tetracycline-labeled transiliac biopsy specimens in 64 premenopausal women with IOP or ILBMD and 40 controls by three-dimensional micro-computed tomography and two-dimensional quantitative histomorphometry to assess marrow adipocyte number, perimeter, and area. Results: IOP and ILBMD subjects did not differ with regard to any adipocyte parameter, and thus results were combined. Subjects had substantially higher adipocyte number (by 22%), size (by 24%), and volume (by 26%) than controls (P < 0.0001 for all). Results remained significant after adjusting for age, body mass index, and bone volume. Controls demonstrated expected direct associations between marrow adiposity and age and inverse relationships between marrow adiposity and bone formation, volume, and microstructure measures. No such relationships were observed in the subjects. Conclusions: Higher marrow adiposity and the absence of expected relationships between marrow adiposity and bone microstructure and remodeling in women with IOP or ILBMD suggest that the relationships between fat and bone are abnormal; excess marrow fat may not arise from a switch from the osteoblast to the adipocyte lineage in this disorder. Whether excess marrow fat contributes to the pathogenesis of this disorder remains unclear.

2020 ◽  
Vol 105 (10) ◽  
pp. e3540-e3556 ◽  
Author(s):  
Adi Cohen ◽  
Stephanie Shiau ◽  
Nandini Nair ◽  
Robert R Recker ◽  
Joan M Lappe ◽  
...  

Abstract Context Premenopausal women with idiopathic osteoporosis (IOP) have abnormal skeletal microarchitecture and variable tissue-level bone formation rate (BFR). Objectives Compare 6 months (M) of teriparatide versus placebo on areal bone mineral density (aBMD) by dual-energy x-ray absorptiometry (DXA), bone turnover markers (BTMs) and BFR at 3M by quadruple-labeled transiliac biopsy. Characterize 12M and 24M effects of teriparatide on aBMD and whether BTMs and BFR predict response. Design 6M phase 2 randomized controlled trial (RCT) followed by open extension. Setting Tertiary referral centers. Patients Premenopausal women with IOP. Interventions A total of 41 women were randomized to either teriparatide 20 mcg (n = 28) or placebo (n = 13). After 6M, those on placebo switched to teriparatide for 24M; those on teriparatide continued for 18M. Main Outcome Measures 6M RCT: Between-group differences in lumbar spine (LS) aBMD (percent change from baseline), 3M BFR, and hypercalcemia. Open-label extension: Within-group change in LS aBMD over 12M and 24M. Secondary outcomes included aBMD change at other sites and relationship between BTMs, BFR, and changes in aBMD. Findings Over 6M, LS aBMD increased by 5.5% (95% CI: 3.83, 7.19) in teriparatide and 1.5% (95% CI: −0.73, 3.83) in placebo (P = 0.007). There were increases in 3M BTMs, and BFR (cancellous and endocortical BFR: between-groups P = 0.004). Over 24M, teriparatide increased LS aBMD by 13.2% (95% CI: 10.3, 16.2), total hip by 5.2% (95% CI: 3.7, 6.7) and femoral neck by 5.0% (95% CI: 3.2, 6.7; all P ≤ 0.001). Serum N-terminal propeptides of procollagen type 1 (P1NP) and 3M endocortical BFR were moderately associated with LS aBMD response. Teriparatide was well-tolerated. Conclusions Teriparatide increased BFR and formation markers and was associated with marked aBMD improvements in most premenopausal women (82%) with IOP.


2001 ◽  
Vol 281 (2) ◽  
pp. E283-E288 ◽  
Author(s):  
Dennis L. Andress

Insulin-like growth factor binding protein-5 (IGFBP-5) is an osteoblast secretory protein that becomes incorporated into the mineralized bone matrix. In osteoblast cultures, IGFBP-5 stimulates cell proliferation by an IGF-independent mechanism. To evaluate whether IGFBP-5 can stimulate osteoblast activity and enhance bone accretion in a mouse model of osteoblast insufficiency, daily subcutaneous injections of either intact [IGFBP-5 (intact)] or carboxy-truncated IGFBP-5 [IGFBP-5-(1–169)] were given to ovariectomized (OVX) mice for 8 wk. Femur and spine bone mineral density (BMD), measured every 2 wk, showed early and sustained increases in response to IGFBP-5. Bone histomorphometry of cancellous bone showed significant elevations in the bone formation rate in both the femur metaphysis [IGFBP-5- (1)] only) and spine compared with OVX controls. IGFBP-5 also stimulated osteoblast number in the femur IGFBP-5-(1–169) only) and spine. These data indicate that IGFBP-5 effectively enhances bone formation and bone accretion in OVX mice by stimulating osteoblast activity. The finding that IGFBP-5-(1–169) is bioactive in vivo indicates that the carboxy-terminal portion is not required for this bone anabolic effect.


2010 ◽  
Vol 299 (3) ◽  
pp. E426-E436 ◽  
Author(s):  
Panan Suntornsaratoon ◽  
Kannikar Wongdee ◽  
Suchandra Goswami ◽  
Nateetip Krishnamra ◽  
Narattaphol Charoenphandhu

The lactogenic hormone prolactin (PRL) directly regulates osteoblast functions in vitro and modulates bone remodeling in nulliparous rats, but its osteoregulatory roles in pregnant and lactating rats with physiological hyperprolactinemia remained unclear. Herein, bone changes were investigated in rats treated with bromocriptine (Bromo), an inhibitor of pituitary PRL release, or Bromo+PRL at different reproductive phases, from mid-pregnancy to late lactation. PRL receptors were strongly expressed in osteoblasts lining bone trabeculae, indicating bone as a target of PRL actions. By using dual energy X-ray absorptiometry, we found a significant increase in bone mineral density in the femora and vertebrae of pregnant rats. Such pregnancy-induced bone gain was, however, PRL independent and may have resulted from the increased cortical thickness. Bone trabeculae were modestly changed during pregnancy as evaluated by bone histomorphometry. On the other hand, lactating rats, especially in late lactation, showed massive bone loss in bone trabeculae but not in cortical shells. Further study in Bromo- and Bromo+PRL-treated rats suggested that PRL contributed to decreases in trabecular bone volume and number and increases in trabecular separation and eroded surface, as well as a paradoxical increase in bone formation rate in late lactation. Uncoupling of trabecular bone formation and resorption was evident in lactating rats, with the latter being predominant. In conclusion, pregnancy mainly induced cortical bone gain, whereas lactation led to trabecular bone loss in both long bones and vertebrae. Although PRL was not responsible for the pregnancy-induced bone gain, it was an important regulator of bone modeling during lactation.


Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2008-2015 ◽  
Author(s):  
Yanfei L. Ma ◽  
Henry U. Bryant ◽  
Qingqiang Zeng ◽  
Allen Schmidt ◽  
Jennifer Hoover ◽  
...  

With the ready availability of several osteoporosis therapies, teriparatide [human PTH-(1–34)] is likely to be prescribed to postmenopausal women with prior exposure to agents that prevent bone loss, such as bisphosphonates, estrogen, or selective estrogen receptor modulators. Therefore, we evaluated the ability of once daily teriparatide to induce bone formation in ovariectomized (Ovx) rats with extended prior exposure to various antiresorptive agents, such as alendronate (ABP), 17α-ethinyl estradiol (EE), or raloxifene (Ral). Sprague Dawley rats were Ovx and treated with ABP (28 μg/kg, twice weekly), EE (0.1 mg/kg·d), or Ral (1 mg/kg·d) for 10 months before switching to teriparatide 30 μg/kg·d for another 2 months. Analysis of the proximal tibial metaphysis showed that all three antiresorptive agents prevented ovariectomy-induced bone loss after 10 months, but were mechanistically distinct, as shown by histomorphometry. Before teriparatide treatment, ABP strongly suppressed activation frequency and bone formation rate to below levels in other treatment groups, whereas these parameters were not different from sham values for EE or Ral. Trabecular area for ABP, EE, and Ral were greater than that in Ovx controls. However, the trabecular bone effects of ABP were attributed not only to effects on the secondary spongiosa, but also to the preservation of primary spongiosa, which was prevented from remodeling. After 2 months of teriparatide treatment, lumbar vertebra showed relative bone mineral density increases of 18%, 7%, 11%, and 10% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Histomorphometry showed that trabecular area was increased by 105%, 113%, 36%, and 48% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Teriparatide enhanced mineralizing surface, mineral apposition rate, and bone formation rate in all groups. Compression testing of vertebra showed that teriparatide improved strength (peak load) and toughness in all groups to a proportionately similar extent compared with 10 month levels. These data showed a surprising ability of the rat skeleton to respond to teriparatide despite extensive pretreatment with ABP, EE, or Ral. Therefore, the mature skeleton of Ovx rats remains highly responsive to the appositional effects of teriparatide regardless of pretreatment status in terms of cancellous bone area or rate of bone turnover.


2015 ◽  
Vol 309 (11) ◽  
pp. E936-E948 ◽  
Author(s):  
Kanogwun Thongchote ◽  
Saovaros Svasti ◽  
Jarinthorn Teerapornpuntakit ◽  
Panan Suntornsaratoon ◽  
Nateetip Krishnamra ◽  
...  

β-Thalassemia, a hereditary anemic disorder, is often associated with skeletal complications that can be found in both males and females. The present study aimed to investigate the age- and sex-dependent changes in bone mineral density (BMD) and trabecular microstructure in βIVSII-654knockin thalassemic mice. Dual-energy X-ray absorptiometry and computer-assisted bone histomorphometry were employed to investigate temporal changes in BMD and histomorphometric parameters in male and female mice of a βIVSII-654knockin mouse model of human β-thalassemia, in which impaired splicing of β-globin transcript was caused by hemizygous C→T mutation at nucleotide 654 of intron 2. Young, growing βIVSII-654mice (1 mo old) manifested shorter bone length and lower BMD than their wild-type littermates, indicating possible growth retardation and osteopenia, the latter of which persisted until 8 mo of age (adult mice). Interestingly, two-way analysis of variance suggested an interaction between sex and βIVSII-654genotype, i.e., more severe osteopenia in adult female mice. Bone histomorphometry further suggested that low trabecular bone volume in male βIVSII-654mice, particularly during a growing period (1–2 mo), was primarily due to suppression of bone formation, whereas both a low bone formation rate and a marked increase in osteoclast surface were observed in female βIVSII-654mice. In conclusion, osteopenia and trabecular microstructural defects were present in both male and female βIVSII-654knockin thalassemic mice, but the severity, disease progression, and cellular mechanism differed between the sexes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Corinne E. Metzger ◽  
S. Anand Narayanan ◽  
Jon P. Elizondo ◽  
Anne Michal Carter ◽  
David C. Zawieja ◽  
...  

Abstract Chronic pediatric inflammatory bowel disease (IBD) leads to lack of bone accrual, bone loss, and increased fractures. Presently there is no cure, and many IBD treatments incur negative side effects. We previously discovered treatment with exogenous irisin resolved inflammatory changes in the colon, gut lymphatics, and bone in a mild IBD rodent model. Here we assess irisin treatment in severe IBD induced via dextran sodium sulfate (DSS). Male Sprague Dawley rats (2-mo-old) were untreated (Con) or given 2% DSS in drinking water. In week two, half of each group (Con + Ir and DSS + Ir) received injections of recombinant irisin (i.p., 2x/wk). After 4 weeks, gut inflammation was associated with declines in bone mineral density and cancellous bone volume. Furthermore, elevated osteocyte TNF-α, interleukin-6, RANKL, OPG, and sclerostin corresponded with higher osteoclast surfaces and lower bone formation rate in DSS animals as well as lower ultimate load. While irisin treatment improved colon inflammation, there were no improvements in bone density or bone mechanical properties; however, irisin elevated bone formation rate, decreased osteoclast surfaces, and reduced osteocyte pro-inflammatory factors. These data highlight the negative impact of chronic gut inflammation on bone as well as the therapeutic potential of irisin as an anti-inflammatory treatment.


2005 ◽  
Vol 288 (4) ◽  
pp. E723-E730 ◽  
Author(s):  
Gustavo Duque ◽  
Michael Macoritto ◽  
Natalie Dion ◽  
Louis-Georges Ste-Marie ◽  
Richard Kremer

Recent studies suggest that vitamin D signaling regulates bone formation. However, the overall effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on bone turnover in vivo is still unclear. In this study, our aim was to examine the effect of 1,25(OH)2D3 on bone turnover in SAM-P/6, a hormone-independent mouse model of senile osteoporosis characterized by a decrease in bone formation. Male and female 4-mo-old SAM-P/6 mice were treated with 1,25(OH)2D3 (18 pmol/24 h) or vehicle for a period of 6 wk, and a group of age- and sex-matched nonosteoporotic animals was used as control. Bone mineral density (BMD) at the lumbar spine increased rapidly by >30 ± 5% ( P < 0.001) in 1,25(OH)2D3-treated SAM-P/6 animals, whereas BMD decreased significantly by 18 ± 2% ( P < 0.01) in vehicle-treated SAM-P/6 animals and remained stable in control animals during the same period. Static and dynamic bone histomorphometry indicated that 1,25(OH)2D3 significantly increased bone volume and other parameters of bone quality as well as subperiosteal bone formation rate compared with vehicle-treated SAM-P/6 mice. However, no effect on trabecular bone formation was observed. This was accompanied by a marked decrease in the number of osteoclasts and eroded surfaces. A significant increase in circulating bone formation markers and a decrease in bone resorption markers was also observed. Finally, bone marrow cells, obtained from 1,25(OH)2D3-treated animals and cultured in the absence of 1,25(OH)2D3, differentiated more intensely into osteoblasts compared with those derived from vehicle-treated mice cultured in the same conditions. Taken together, these findings demonstrate that 1,25(OH)2D3 acts simultaneously on bone formation and resorption to prevent the development of senile osteoporosis.


1998 ◽  
Vol 12 (1) ◽  
pp. 71-75 ◽  
Author(s):  
S. Williams ◽  
A. Wakisaka ◽  
Q.Q. Zeng ◽  
J. Barnes ◽  
S. Seyedin ◽  
...  

The effect of oral minocycline on osteopenia in ovariectomized (OVX) old rats was examined in this study. Rats were divided into 4 groups: sham-operated, OVX followed by treatment with vehicle, minocycline, or 17β-estradiol. The treatment was initiated one day after OVX and proceeded for 8 wks. OVX reduced bone mineral density (BMD) in the whole femur and in the femoral regions that are enriched in trabecular bone. Treatment with minocycline or estrogen prevented a decrease in BMD. Femoral trabecular bone area, trabecular number, and trabecular thickness were reduced, and trabecular separation was increased by OVX. Treatment with minocycline or estrogen abolished the detrimental effects induced by OVX. OVX also reduced indices that reflect the interconnectivity of trabecular bone, and the loss of trabecular connectivity was prevented by treatment with minocycline or estrogen. Based on the levels of urinary pyridinoline, we showed that the effect of estrogen, but not minocycline, was primarily through its inhibitory effect on bone resorption. Analysis of bone turnover activity suggests that OVX increased parameters associated with bone resorption (eroded surface) and formation (osteoid surface, mineralizing surface, mineral apposition rate, and bone formation rate). Treatment with minocycline reduced bone resorption modestly and stimulated bone formation substantially. In contrast, treatment with estrogen drastically reduced parameters associated with both bone resorption and formation. We have concluded that oral minocycline can effectively prevent the decrease in BMD and trabecular bone through its dual effects on bone resorption and formation.


Sign in / Sign up

Export Citation Format

Share Document