scholarly journals DSS-induced colitis produces inflammation-induced bone loss while irisin treatment mitigates the inflammatory state in both gut and bone

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Corinne E. Metzger ◽  
S. Anand Narayanan ◽  
Jon P. Elizondo ◽  
Anne Michal Carter ◽  
David C. Zawieja ◽  
...  

Abstract Chronic pediatric inflammatory bowel disease (IBD) leads to lack of bone accrual, bone loss, and increased fractures. Presently there is no cure, and many IBD treatments incur negative side effects. We previously discovered treatment with exogenous irisin resolved inflammatory changes in the colon, gut lymphatics, and bone in a mild IBD rodent model. Here we assess irisin treatment in severe IBD induced via dextran sodium sulfate (DSS). Male Sprague Dawley rats (2-mo-old) were untreated (Con) or given 2% DSS in drinking water. In week two, half of each group (Con + Ir and DSS + Ir) received injections of recombinant irisin (i.p., 2x/wk). After 4 weeks, gut inflammation was associated with declines in bone mineral density and cancellous bone volume. Furthermore, elevated osteocyte TNF-α, interleukin-6, RANKL, OPG, and sclerostin corresponded with higher osteoclast surfaces and lower bone formation rate in DSS animals as well as lower ultimate load. While irisin treatment improved colon inflammation, there were no improvements in bone density or bone mechanical properties; however, irisin elevated bone formation rate, decreased osteoclast surfaces, and reduced osteocyte pro-inflammatory factors. These data highlight the negative impact of chronic gut inflammation on bone as well as the therapeutic potential of irisin as an anti-inflammatory treatment.

2010 ◽  
Vol 299 (3) ◽  
pp. E426-E436 ◽  
Author(s):  
Panan Suntornsaratoon ◽  
Kannikar Wongdee ◽  
Suchandra Goswami ◽  
Nateetip Krishnamra ◽  
Narattaphol Charoenphandhu

The lactogenic hormone prolactin (PRL) directly regulates osteoblast functions in vitro and modulates bone remodeling in nulliparous rats, but its osteoregulatory roles in pregnant and lactating rats with physiological hyperprolactinemia remained unclear. Herein, bone changes were investigated in rats treated with bromocriptine (Bromo), an inhibitor of pituitary PRL release, or Bromo+PRL at different reproductive phases, from mid-pregnancy to late lactation. PRL receptors were strongly expressed in osteoblasts lining bone trabeculae, indicating bone as a target of PRL actions. By using dual energy X-ray absorptiometry, we found a significant increase in bone mineral density in the femora and vertebrae of pregnant rats. Such pregnancy-induced bone gain was, however, PRL independent and may have resulted from the increased cortical thickness. Bone trabeculae were modestly changed during pregnancy as evaluated by bone histomorphometry. On the other hand, lactating rats, especially in late lactation, showed massive bone loss in bone trabeculae but not in cortical shells. Further study in Bromo- and Bromo+PRL-treated rats suggested that PRL contributed to decreases in trabecular bone volume and number and increases in trabecular separation and eroded surface, as well as a paradoxical increase in bone formation rate in late lactation. Uncoupling of trabecular bone formation and resorption was evident in lactating rats, with the latter being predominant. In conclusion, pregnancy mainly induced cortical bone gain, whereas lactation led to trabecular bone loss in both long bones and vertebrae. Although PRL was not responsible for the pregnancy-induced bone gain, it was an important regulator of bone modeling during lactation.


Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2008-2015 ◽  
Author(s):  
Yanfei L. Ma ◽  
Henry U. Bryant ◽  
Qingqiang Zeng ◽  
Allen Schmidt ◽  
Jennifer Hoover ◽  
...  

With the ready availability of several osteoporosis therapies, teriparatide [human PTH-(1–34)] is likely to be prescribed to postmenopausal women with prior exposure to agents that prevent bone loss, such as bisphosphonates, estrogen, or selective estrogen receptor modulators. Therefore, we evaluated the ability of once daily teriparatide to induce bone formation in ovariectomized (Ovx) rats with extended prior exposure to various antiresorptive agents, such as alendronate (ABP), 17α-ethinyl estradiol (EE), or raloxifene (Ral). Sprague Dawley rats were Ovx and treated with ABP (28 μg/kg, twice weekly), EE (0.1 mg/kg·d), or Ral (1 mg/kg·d) for 10 months before switching to teriparatide 30 μg/kg·d for another 2 months. Analysis of the proximal tibial metaphysis showed that all three antiresorptive agents prevented ovariectomy-induced bone loss after 10 months, but were mechanistically distinct, as shown by histomorphometry. Before teriparatide treatment, ABP strongly suppressed activation frequency and bone formation rate to below levels in other treatment groups, whereas these parameters were not different from sham values for EE or Ral. Trabecular area for ABP, EE, and Ral were greater than that in Ovx controls. However, the trabecular bone effects of ABP were attributed not only to effects on the secondary spongiosa, but also to the preservation of primary spongiosa, which was prevented from remodeling. After 2 months of teriparatide treatment, lumbar vertebra showed relative bone mineral density increases of 18%, 7%, 11%, and 10% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Histomorphometry showed that trabecular area was increased by 105%, 113%, 36%, and 48% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Teriparatide enhanced mineralizing surface, mineral apposition rate, and bone formation rate in all groups. Compression testing of vertebra showed that teriparatide improved strength (peak load) and toughness in all groups to a proportionately similar extent compared with 10 month levels. These data showed a surprising ability of the rat skeleton to respond to teriparatide despite extensive pretreatment with ABP, EE, or Ral. Therefore, the mature skeleton of Ovx rats remains highly responsive to the appositional effects of teriparatide regardless of pretreatment status in terms of cancellous bone area or rate of bone turnover.


Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3652-3659 ◽  
Author(s):  
Aline Martin ◽  
Raphaël de Vittoris ◽  
Valentin David ◽  
Ricardo Moraes ◽  
Martine Bégeot ◽  
...  

Abstract In vitro studies have demonstrated leptin-positive effects on the osteoblast lineage and negative effects on osteoclastogenesis. Therefore, we tested the hypothesis that leptin may prevent tail-suspension-induced bone loss characterized by an uncoupling pattern of bone remodeling, through both mechanisms. Female rats were randomly tail-suspended or not and treated either with ip administration of leptin or vehicle for 3, 7, and 14 d. As measured by dual energy x-ray absorptiometry, tail-suspension induced a progressive decrease in tibia-metaphysis bone mineral density, which was prevented by leptin. Histomorphometry showed that this was related to the prevention of the transient increase in osteoclast number observed with suspension at d 7. These effects could be mediated by the receptor activator of nuclear factor κB-ligand (RANKL)/osteoprotegerin (OPG) pathway since we observed using direct RT-PCR, a suspension-induced increase in RANKL gene expression in proximal tibia at d 3, which was counterbalanced by leptin administration with a similar 3-fold increase in OPG expression and a RANKL to OPG ratio close to nonsuspended conditions. In addition, leptin prevented the decrease in bone formation rate induced by tail-suspension at d 14. The latter could be related to the role of leptin in mediating the reciprocal differentiation between adipocytes and osteoblasts, because leptin concurrently blunted the disuse-induced increase in bone marrow adipogenesis. In summary, these data suggest that peripheral administration of leptin could prevent disuse-induced bone loss through, first, a major inhibitory effect on bone resorption and, second, a delayed effect preventing the decrease in bone formation.


1984 ◽  
Vol 246 (2) ◽  
pp. R190-R196 ◽  
Author(s):  
R. H. Drivdahl ◽  
C. C. Liu ◽  
D. J. Baylink

Weanling Sprague-Dawley rats subjected to varying degrees of low-Ca dietary stress (depletion) showed graded increases in the rate of endosteal bone formation when normal dietary Ca was restored (repletion). There was a strong positive correlation between the rate of bone resorption in depletion and the rate of bone formation attained after 1 wk of repletion. However, bone formation declined rapidly within the first 4 wk of repletion, despite the persistence of a substantial endosteal bone volume deficit. Furthermore the medullary area (indicative of bone volume) did not by itself determine the bone formation rate. Bone volume in test groups was restored to control levels after 6 mo of repletion, and this result could be predicted by a kinetic analysis. Thus, although very high rates of formation in early repletion decline rapidly, smaller increments relative to controls must be sustained for long periods. Our data indicate that increased formation rats at all stages of repletion are a consequence of elevations in both osteoblast number and osteoblast activity.


2001 ◽  
Vol 281 (2) ◽  
pp. E283-E288 ◽  
Author(s):  
Dennis L. Andress

Insulin-like growth factor binding protein-5 (IGFBP-5) is an osteoblast secretory protein that becomes incorporated into the mineralized bone matrix. In osteoblast cultures, IGFBP-5 stimulates cell proliferation by an IGF-independent mechanism. To evaluate whether IGFBP-5 can stimulate osteoblast activity and enhance bone accretion in a mouse model of osteoblast insufficiency, daily subcutaneous injections of either intact [IGFBP-5 (intact)] or carboxy-truncated IGFBP-5 [IGFBP-5-(1–169)] were given to ovariectomized (OVX) mice for 8 wk. Femur and spine bone mineral density (BMD), measured every 2 wk, showed early and sustained increases in response to IGFBP-5. Bone histomorphometry of cancellous bone showed significant elevations in the bone formation rate in both the femur metaphysis [IGFBP-5- (1)] only) and spine compared with OVX controls. IGFBP-5 also stimulated osteoblast number in the femur IGFBP-5-(1–169) only) and spine. These data indicate that IGFBP-5 effectively enhances bone formation and bone accretion in OVX mice by stimulating osteoblast activity. The finding that IGFBP-5-(1–169) is bioactive in vivo indicates that the carboxy-terminal portion is not required for this bone anabolic effect.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yasutaka Sotozono ◽  
Kazuya Ikoma ◽  
Masamitsu Kido ◽  
Okihiro Onishi ◽  
Masataka Minami ◽  
...  

Abstract Background Teriparatide (TPTD) is a drug for osteoporosis that promotes bone formation and improves bone quality. However, the effects of TPTD on cortical bone are not well understood. Sweep imaging with Fourier transform (SWIFT) has been reported as a useful tool for evaluating bound water of cortical bone, but it has yet to be used to investigate the effects of TPTD on cortical bone. This study aimed to evaluate the consequences of the effect of TPTD on cortical bone formation using SWIFT. Methods Twelve-week-old female Sprague-Dawley rats (n = 36) were reared after ovariectomy to create a postmenopausal osteoporosis model. They were divided into two groups: the TPTD and non-TPTD groups. Rats were euthanized at 4, 12, and 24 weeks after initiating TPTD treatment. Tibial bones were evaluated using magnetic resonance imaging (MRI) and bone histomorphometry. In MRI, proton density-weighted imaging (PDWI) and SWIFT imaging were performed. The signal-to-noise ratio (SNR) was calculated for each method. The same area evaluated by MRI was then used to calculate the bone formation rate by bone histomorphometry. Measurements were compared using the Mann-Whitney U-test, and a P-value of < 0.05 was considered significant. Results PDWI-SNR was not significantly different between the two groups at any time point (P = 0.589, 0.394, and 0.394 at 4, 12, and 24 weeks, respectively). Contrarily, SWIFT-SNR was significantly higher in the TPTD group than in the non-TPTD group at 4 weeks after initiating treatment, but it was not significantly different at 12 and 24 weeks (P = 0.009, 0.937, and 0.818 at 4, 12, and 24 weeks, respectively). The bone formation rate assessed by histomorphometry was significantly higher in the TPTD group than in the non-TPTD group at all timepoints (P < 0.05, all weeks). In particular, at 4 weeks, the bone formation rate was markedly higher in the TPTD group than in the non-TPTD group (P = 0.028, 1.98 ± 0.33 vs. 0.09 ± 0.05 μm3/μm2/day). Conclusions SWIFT could detect increased signals of bound water, reflecting the effect of TPTD on the cortical bone. The signal detected by SWIFT reflects a marked increase in the cortical bone formation rate.


2015 ◽  
Vol 309 (11) ◽  
pp. E936-E948 ◽  
Author(s):  
Kanogwun Thongchote ◽  
Saovaros Svasti ◽  
Jarinthorn Teerapornpuntakit ◽  
Panan Suntornsaratoon ◽  
Nateetip Krishnamra ◽  
...  

β-Thalassemia, a hereditary anemic disorder, is often associated with skeletal complications that can be found in both males and females. The present study aimed to investigate the age- and sex-dependent changes in bone mineral density (BMD) and trabecular microstructure in βIVSII-654knockin thalassemic mice. Dual-energy X-ray absorptiometry and computer-assisted bone histomorphometry were employed to investigate temporal changes in BMD and histomorphometric parameters in male and female mice of a βIVSII-654knockin mouse model of human β-thalassemia, in which impaired splicing of β-globin transcript was caused by hemizygous C→T mutation at nucleotide 654 of intron 2. Young, growing βIVSII-654mice (1 mo old) manifested shorter bone length and lower BMD than their wild-type littermates, indicating possible growth retardation and osteopenia, the latter of which persisted until 8 mo of age (adult mice). Interestingly, two-way analysis of variance suggested an interaction between sex and βIVSII-654genotype, i.e., more severe osteopenia in adult female mice. Bone histomorphometry further suggested that low trabecular bone volume in male βIVSII-654mice, particularly during a growing period (1–2 mo), was primarily due to suppression of bone formation, whereas both a low bone formation rate and a marked increase in osteoclast surface were observed in female βIVSII-654mice. In conclusion, osteopenia and trabecular microstructural defects were present in both male and female βIVSII-654knockin thalassemic mice, but the severity, disease progression, and cellular mechanism differed between the sexes.


2012 ◽  
Vol 97 (8) ◽  
pp. 2782-2791 ◽  
Author(s):  
Adi Cohen ◽  
David W. Dempster ◽  
Emily M. Stein ◽  
Thomas L. Nickolas ◽  
Hua Zhou ◽  
...  

Abstract Context: We have previously reported that premenopausal women with idiopathic osteoporosis based on fractures (IOP) or idiopathic low bone mineral density (ILBMD) exhibit markedly reduced bone mass, profoundly abnormal trabecular microstructure, and significant deficits in trabecular bone stiffness. Bone remodeling was heterogeneous. Those with low bone turnover had evidence of osteoblast dysfunction and the most marked deficits in microstructure and stiffness. Objective: Because osteoblasts and marrow adipocytes derive from a common mesenchymal precursor and excess marrow fat has been implicated in the pathogenesis of bone fragility in anorexia nervosa, glucocorticoid excess, and thiazolidinedione exposure, we hypothesized that marrow adiposity would be higher in affected women and inversely related to bone mass, microarchitecture, bone formation rate, and osteoblast number. Design: We analyzed tetracycline-labeled transiliac biopsy specimens in 64 premenopausal women with IOP or ILBMD and 40 controls by three-dimensional micro-computed tomography and two-dimensional quantitative histomorphometry to assess marrow adipocyte number, perimeter, and area. Results: IOP and ILBMD subjects did not differ with regard to any adipocyte parameter, and thus results were combined. Subjects had substantially higher adipocyte number (by 22%), size (by 24%), and volume (by 26%) than controls (P &lt; 0.0001 for all). Results remained significant after adjusting for age, body mass index, and bone volume. Controls demonstrated expected direct associations between marrow adiposity and age and inverse relationships between marrow adiposity and bone formation, volume, and microstructure measures. No such relationships were observed in the subjects. Conclusions: Higher marrow adiposity and the absence of expected relationships between marrow adiposity and bone microstructure and remodeling in women with IOP or ILBMD suggest that the relationships between fat and bone are abnormal; excess marrow fat may not arise from a switch from the osteoblast to the adipocyte lineage in this disorder. Whether excess marrow fat contributes to the pathogenesis of this disorder remains unclear.


2005 ◽  
Vol 288 (4) ◽  
pp. E723-E730 ◽  
Author(s):  
Gustavo Duque ◽  
Michael Macoritto ◽  
Natalie Dion ◽  
Louis-Georges Ste-Marie ◽  
Richard Kremer

Recent studies suggest that vitamin D signaling regulates bone formation. However, the overall effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on bone turnover in vivo is still unclear. In this study, our aim was to examine the effect of 1,25(OH)2D3 on bone turnover in SAM-P/6, a hormone-independent mouse model of senile osteoporosis characterized by a decrease in bone formation. Male and female 4-mo-old SAM-P/6 mice were treated with 1,25(OH)2D3 (18 pmol/24 h) or vehicle for a period of 6 wk, and a group of age- and sex-matched nonosteoporotic animals was used as control. Bone mineral density (BMD) at the lumbar spine increased rapidly by >30 ± 5% ( P < 0.001) in 1,25(OH)2D3-treated SAM-P/6 animals, whereas BMD decreased significantly by 18 ± 2% ( P < 0.01) in vehicle-treated SAM-P/6 animals and remained stable in control animals during the same period. Static and dynamic bone histomorphometry indicated that 1,25(OH)2D3 significantly increased bone volume and other parameters of bone quality as well as subperiosteal bone formation rate compared with vehicle-treated SAM-P/6 mice. However, no effect on trabecular bone formation was observed. This was accompanied by a marked decrease in the number of osteoclasts and eroded surfaces. A significant increase in circulating bone formation markers and a decrease in bone resorption markers was also observed. Finally, bone marrow cells, obtained from 1,25(OH)2D3-treated animals and cultured in the absence of 1,25(OH)2D3, differentiated more intensely into osteoblasts compared with those derived from vehicle-treated mice cultured in the same conditions. Taken together, these findings demonstrate that 1,25(OH)2D3 acts simultaneously on bone formation and resorption to prevent the development of senile osteoporosis.


1998 ◽  
Vol 12 (1) ◽  
pp. 71-75 ◽  
Author(s):  
S. Williams ◽  
A. Wakisaka ◽  
Q.Q. Zeng ◽  
J. Barnes ◽  
S. Seyedin ◽  
...  

The effect of oral minocycline on osteopenia in ovariectomized (OVX) old rats was examined in this study. Rats were divided into 4 groups: sham-operated, OVX followed by treatment with vehicle, minocycline, or 17β-estradiol. The treatment was initiated one day after OVX and proceeded for 8 wks. OVX reduced bone mineral density (BMD) in the whole femur and in the femoral regions that are enriched in trabecular bone. Treatment with minocycline or estrogen prevented a decrease in BMD. Femoral trabecular bone area, trabecular number, and trabecular thickness were reduced, and trabecular separation was increased by OVX. Treatment with minocycline or estrogen abolished the detrimental effects induced by OVX. OVX also reduced indices that reflect the interconnectivity of trabecular bone, and the loss of trabecular connectivity was prevented by treatment with minocycline or estrogen. Based on the levels of urinary pyridinoline, we showed that the effect of estrogen, but not minocycline, was primarily through its inhibitory effect on bone resorption. Analysis of bone turnover activity suggests that OVX increased parameters associated with bone resorption (eroded surface) and formation (osteoid surface, mineralizing surface, mineral apposition rate, and bone formation rate). Treatment with minocycline reduced bone resorption modestly and stimulated bone formation substantially. In contrast, treatment with estrogen drastically reduced parameters associated with both bone resorption and formation. We have concluded that oral minocycline can effectively prevent the decrease in BMD and trabecular bone through its dual effects on bone resorption and formation.


Sign in / Sign up

Export Citation Format

Share Document