scholarly journals Iodide Symporter Gene Expression in Human Thyroid Tumors1

1998 ◽  
Vol 83 (7) ◽  
pp. 2493-2496 ◽  
Author(s):  
Franco Arturi ◽  
Diego Russo ◽  
Martin Schlumberger ◽  
Jean-Antoine du Villard ◽  
Bernard Caillou ◽  
...  

Expression of the Na+/I− symporter (NIS) gene was investigated by RT-PCR in a selected series of 26 primary thyroid carcinomas (19 papillary, 5 follicular, and 2 anaplastic). Fifteen follicular adenomas (11 “cold ” and 4 “hot” adenomas) were also studied. Five of 19 papillary thyroid cancer did not express NIS messenger ribonucleic acid (mRNA). In all but 1 follicular cancer, NIS transcript was fully detected. In anaplastic tissue, NIS mRNA was only barely detected in 1 case. All of the follicular thyroid adenomas except 1 expressed the NIS gene. In contrast, all tumors studied excluding the anaplastic histotype fully expressed thyroglobulin and thyroid peroxidase mRNA transcripts. In 2 patients, a lower expression (3- to 5-fold) of NIS mRNA was found in metastasis by dot blot analysis compared with those in both normal and primary neoplastic thyroid tissue. Four of 8 differentiated thyroid cancer patients selected for the presence of metastases with negative posttherapy 131I total body scan showed the lack of NIS gene expression in their primary cancer. This defect, at least in these cases, is a somatic and intrinsic lesion of the primary cancer cells and is not due to a dedifferentiation process in the metastatic tissue. The early detection of the loss of NIS gene expression in the primary cancer, therefore, may provide useful information for the management of differentiated thyroid cancer patients.

1997 ◽  
Vol 82 (10) ◽  
pp. 3331-3336 ◽  
Author(s):  
Tsukasa Saito ◽  
Toyoshi Endo ◽  
Akio Kawaguchi ◽  
Masato Ikeda ◽  
Minoru Nakazato ◽  
...  

Abstract The Na+/I− symporter (NIS) is important in hormone synthesis in the thyroid gland. NIS activity, as reflected by I− uptake, was increased by TSH (1 mU/mL) or forskolin (10μ mol/L) in primary cultured human thyroid cells. Northern blot analysis revealed that incubation of these cells with TSH or forskolin for 24 h increased the abundance of NIS messenger ribonucleic acid (mRNA) 2.3- and 2.5-fold, respectively. Immunoblot analysis revealed 2.7- and 2.4-fold increases, respectively, in the amount of NIS protein after 48 h, suggesting that elevated levels of intracellular cAMP induced the expression of NIS in human thyrocytes. We then studied the levels of NIS mRNA and protein in Graves’ thyroid tissue and found that the amount of NIS mRNA in thyroid tissue from individuals with Graves’ disease (n = 5) was 3.8 times that in normal thyroid tissue (n = 5). The abundance of NIS mRNA was significantly correlated with that of thyroid peroxidase or thyroglobulin mRNAs, but not with that of TSH receptor mRNA, in the Graves’ and normal thyroid tissue specimens. The amount of NIS protein was also increased 3.1-fold in Graves’ thyroid tissue compared with that in normal thyroid tissue. The increased expression of NIS may thus contribute to the development of Graves’ disease.


2019 ◽  
Author(s):  
Clotilde Saie ◽  
Johanna Wassermann ◽  
Elise Mathy ◽  
Sophie Tezenas ◽  
Nathalie Chereau ◽  
...  

Author(s):  
Amaia Sandúa ◽  
Monica Macias ◽  
Carolina Perdomo ◽  
Juan Carlos Galofre ◽  
Roser Ferrer ◽  
...  

AbstractBackgroundThyroglobulin (Tg) is fundamental for differentiated thyroid cancer (DTC) monitoring. Tg detection can be enhanced using recombinant human thyroid-stimulating hormone (TSH) (rhTSH). This study is aimed to evaluate the use of the rhTSH stimulation test when using a high-sensitivity Tg assay.MethodsWe retrospectively studied 181 rhTSH tests from 114 patients with DTC and negative for antithyroglobulin antibodies (anti-TgAb). Image studies were performed in all cases. Serum Tg and anti-TgAb were measured using specific immunoassays.ResultsrhTSH stimulation in patients with basal serum Tg (b-Tg) concentrations lower than 0.2 ng/mL always resulted in rhTSH-stimulated serum Tg (s-Tg) concentrations lower than 1.0 ng/mL and negative structural disease. In patients with b-Tg concentration between 0.2 and 1.0 ng/mL, s-Tg detected one patient (1/30) who showed biochemical incomplete response. Patients with negative images had lower s-Tg than those with nonspecific or abnormal findings (p<0.05). Receiver operating characteristic curve analysis of the s-Tg to detect altered images showed an area under the curve of 0.763 (p<0.05). With an s-Tg cutoff of 0.85 ng/mL, the sensitivity was 100%, decreasing to 96.15% with an s-Tg cutoff of 2 ng/mL.ConclusionsPatients with DTC with b-Tg concentrations equal or higher than 0.2 ng/mL can benefit from the rhTSH stimulation test.


2008 ◽  
Vol 93 (10) ◽  
pp. 4080-4087 ◽  
Author(s):  
E. Ferretti ◽  
E. Tosi ◽  
A. Po ◽  
A. Scipioni ◽  
R. Morisi ◽  
...  

Context: Notch genes encode receptors for a signaling pathway that regulates cell growth and differentiation in various contexts, but the role of Notch signaling in thyroid follicular cells has never been fully published. Objective: The objective of the study was to characterize the expression of Notch pathway components in thyroid follicular cells and Notch signaling activities in normal and transformed thyrocytes. Design/Setting and Patients: Expression of Notch pathway components and key markers of thyrocyte differentiation was analyzed in murine and human thyroid tissues (normal and tumoral) by quantitative RT-PCR and immunohistochemistry. The effects of Notch overexpression in human thyroid cancer cells and FTRL-5 cells were explored with analysis of gene expression, proliferation assays, and experiments involving transfection of a luciferase reporter construct containing human NIS promoter regions. Results: Notch receptors are expressed during the development of murine thyrocytes, and their expression levels parallel those of thyroid differentiation markers. Notch signaling characterized also normal adult thyrocytes and is regulated by TSH. Notch pathway components are variably expressed in human normal thyroid tissue and thyroid tumors, but expression levels are clearly reduced in undifferentiated tumors. Overexpression of Notch-1 in thyroid cancer cells restores differentiation, reduces cell growth rates, and stimulates NIS expression via a direct action on the NIS promoter. Conclusion: Notch signaling is involved in the determination of thyroid cell fate and is a direct regulator of thyroid-specific gene expression. Its deregulation may contribute to the loss of differentiation associated with thyroid tumorigenesis.


2021 ◽  
Author(s):  
Hui Zhao ◽  
Pengjie Li ◽  
Junjian Li ◽  
Lian Duan ◽  
Yanzhu Jiao ◽  
...  

Abstract Background Thyroid carcinoma (THC) is very common, yet its pathogenesis and the key tumor marker genes remain unclear.Methods Gene expression datasets from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas Project (TCGA) were used for gene differential expression analysis. Functional annotation analysis, Clinical prognosis analysis and Differential DNA methylation analysis were conducted on the differentially expressed genes (DEGs). Results Compared with induced pluripotent stem cells (iPSCs), 237 differentially expressed THC intersection genes derived from GEO and TCGA were obtained, of which 153 genes were closely related to clinicopathological features and prognostic effects. Biological function analysis indicated that most of these DEGs were involved in the proteinaceous extracellular matrix, epithelial-to-mesenchymal transition (EMT), and PI3K-Akt signaling pathway, resulting in effects on tumor invasion and metastasis. Finally, the results of differential methylation levels demonstrated that the high expression of 4 genes (CHI3L1, NFE2L3, S100A2, and LAMB3) was strongly correlated with the development of thyroid cancer.Conclusions Proteinaceous extracellular matrix, EMT, and PI3K-Akt signaling pathways were of great significance in the metastasis and invasion of THC. Genes such as CHI3L1, NFE2L3, S100A2, and LAMB3 were susceptible to THC.


Sign in / Sign up

Export Citation Format

Share Document