scholarly journals Androstenedione Does Not Stimulate Muscle Protein Anabolism in Young Healthy Men1

2000 ◽  
Vol 85 (1) ◽  
pp. 55-59
Author(s):  
Blake B. Rasmussen ◽  
Elena Volpi ◽  
Dennis C. Gore ◽  
Robert R. Wolfe

Androstenedione is the immediate precursor of testosterone. Androstenedione intake has been speculated to increase plasma testosterone levels and muscle anabolism. Thus, androstenedione supplements have become widely popular in the sport community to improve performance. This study was designed to determine whether 5 days of oral androstenedione (100 mg/day) supplementation increases skeletal muscle anabolism. Six healthy young men were studied before the treatment period and after 5 days of oral androstenedione supplementation. Muscle protein turnover parameters were compared to those of a control group studied twice as well and receiving no treatment. We measured muscle protein kinetics using a three-compartment model involving infusion of l-[ring-2H5]phenylalanine, blood sampling from femoral artery and vein, and muscle biopsies. Plasma testosterone, androstenedione, LH, and estradiol concentrations were determined by RIA. After ingestion of oral androstenedione, plasma testosterone and LH concentrations did not change from basal, whereas plasma androstenedione and estradiol concentrations were significantly increased (P < 0.05). Compared to a control group, androstenedione did not affect muscle protein synthesis and breakdown, or phenylalanine net balance across the leg. We conclude that oral androstenedione does not increase plasma testosterone concentrations and has no anabolic effect on muscle protein metabolism in young eugonadal men.

2008 ◽  
Vol 295 (4) ◽  
pp. E959-E963 ◽  
Author(s):  
Elena Volpi ◽  
David L. Chinkes ◽  
Blake B. Rasmussen

Stable isotope tracer experiments of human muscle amino acid and protein kinetics often involve a sequential design, with the same subject studied at baseline and during an intervention. However, prolonged fasting and sequential muscle biopsies from the same area could theoretically affect muscle protein metabolism. The purpose of this study was to determine if sequential muscle biopsies and extended fasting significantly affect parameters of muscle protein and amino acid kinetics in six human subjects. After a 12-h overnight fast, a primed continuous infusion of l-[ ring-2H5]phenylalanine was started. After 120 min, we took the first of a series of five hourly muscle biopsies from the same vastus lateralis to measure mixed muscle protein fractional synthetic rate. Furthermore, between 150–180, 210–240, and 330–360 min, we measured leg phenylalanine kinetics using the two-pool and the three-pool arteriovenous balance models. Tracer enrichments were at steady state, and muscle protein FSR and phenylalanine kinetics did not change throughout the experiment ( P = not significant). We conclude that a 6-h tracer infusion during extended fasting (up to 18 h) with five sequential muscle biopsies from the same muscle do not affect basal mixed muscle protein synthesis and muscle phenylalanine kinetics in human subjects. Thus, when using a sequential study design over this period of time, it is unnecessary to include a saline only control group to account for these variables.


1998 ◽  
Vol 156 (1) ◽  
pp. 83-89 ◽  
Author(s):  
D Dardevet ◽  
C Sornet ◽  
I Savary ◽  
E Debras ◽  
P Patureau-Mirand ◽  
...  

This study was performed to assess the effect of glucocorticoids (dexamethasone) on insulin- and IGF-I-regulated muscle protein metabolism in adult and old rats. Muscle atrophy occurred more rapidly in old rats, and recovery of muscle mass was impaired when compared with adults. Muscle wasting resulted mainly from increased protein breakdown in adult rat but from depressed protein synthesis in the aged animal. Glucocorticoid treatment significantly decreased the stimulatory effect of insulin and IGF-I on muscle protein synthesis in adult rats by 25.9 and 58.1% respectively. In old rats, this effect was even greater, being 49.3 and 100% respectively. With regard to muscle proteolysis, glucocorticoids blunted the anti-proteolytic action of insulin and IGF-I in both age groups. During the recovery period, adult rats reversed the glucocorticoid-induced resistance of muscle protein metabolism within 3 days, at which time old rats still exhibited the decrease in insulin-regulated proteolysis. In conclusion, the higher sensitivity of old rat muscle to glucocorticoids may in part result from the greater modification of the effects of insulin and IGF-I on muscle protein metabolism. These responses to glucocorticoids in old rats may be associated with the emergence of muscle atrophy with advancing age.


2004 ◽  
Vol 286 (1) ◽  
pp. E92-E101 ◽  
Author(s):  
Kevin R. Short ◽  
Janet L. Vittone ◽  
Maureen L. Bigelow ◽  
David N. Proctor ◽  
K. Sreekumaran Nair

Aging in humans is associated with loss of lean body mass, but the causes are incompletely defined. Lean tissue mass and function depend on continuous rebuilding of proteins. We tested the hypotheses that whole body and mixed muscle protein metabolism declines with age in men and women and that aerobic exercise training would partly reverse this decline. Seventy-eight healthy, previously untrained men and women aged 19-87 yr were studied before and after 4 mo of bicycle training (up to 45 min at 80% peak heart rate, 3-4 days/wk) or control (flexibility) activity. At the whole body level, protein breakdown (measured as [13C]leucine and [15N]phenylalanine flux), Leu oxidation, and protein synthesis (nonoxidative Leu disposal) declined with age at a rate of 4-5% per decade ( P < 0.001). Fat-free mass was closely correlated with protein turnover and declined 3% per decade ( P < 0.001), but even after covariate adjustment for fat-free mass, the decline in protein turnover with age remained significant. There were no differences between men and women after adjustment for fat-free mass. Mixed muscle protein synthesis also declined with age 3.5% per decade ( P < 0.05). Exercise training improved aerobic capacity 9% overall ( P < 0.01), and mixed muscle protein synthesis increased 22% ( P < 0.05), with no effect of age on the training response for either variable. Fat-free mass, whole body protein turnover, and resting metabolic rate were unchanged by training. We conclude that rates of whole body and muscle protein metabolism decline with age in men and women, thus indicating that there is a progressive decline in the body's remodeling processes with aging. This study also demonstrates that aerobic exercise can enhance muscle protein synthesis irrespective of age.


1996 ◽  
Vol 81 (5) ◽  
pp. 2034-2038 ◽  
Author(s):  
Kevin D. Tipton ◽  
Arny A. Ferrando ◽  
Bradley D. Williams ◽  
Robert R. Wolfe

Tipton, Kevin D., Arny A. Ferrando, Bradley D. Williams, and Robert R. Wolfe. Muscle protein metabolism in female swimmers after a combination of resistance and endurance exercise. J. Appl. Physiol. 81(5): 2034–2038, 1996.—There is little known about the responses of muscle protein metabolism in women to exercise. Furthermore, the effect of adding resistance training to an endurance training regimen on net protein anabolism has not been established in either men or women. The purpose of this study was to quantify the acute effects of combined swimming and resistance training on protein metabolism in female swimmers by the direct measurement of muscle protein synthesis and whole body protein degradation. Seven collegiate female swimmers were each studied on four separate occasions with a primed constant infusion of ring-[13C6]phenylalanine (Phe) to measure the fractional synthetic rate (FSR) of the posterior deltoid and whole body protein breakdown. Measurements were made over a 5-h period at rest and after each of three randomly ordered workouts: 1) 4,600 m of intense interval swimming (SW); 2) a whole body resistance-training workout with no swimming on that day (RW); and 3) swimming and resistance training combined (SR). Whole body protein breakdown was similar for all treatments (0.75 ± 0.04, 0.69 ± 0.03, 0.69 ± 0.02, and 0.71 ± 0.04 μmol ⋅ min−1 ⋅ kg−1for rest, RW, SW, and SR, respectively). The FSR of the posterior deltoid was significantly greater ( P< 0.05) after SR (0.082 ± 0.015%/h) than at rest (0.045 ± 0.006%/h). There was no significant difference in the FSR after RW (0.048 ± 0.004%/h) or SW (0.064 ± 0.008%/h) from rest or from SR. These data indicate that the combination of swimming and resistance exercise stimulates net muscle protein synthesis above resting levels in female swimmers.


2011 ◽  
Vol 301 (5) ◽  
pp. R1408-R1417 ◽  
Author(s):  
E. Lichar Dillon ◽  
Shanon L. Casperson ◽  
William J. Durham ◽  
Kathleen M. Randolph ◽  
Randall J. Urban ◽  
...  

The combination of increasing blood flow and amino acid (AA) availability provides an anabolic stimulus to the skeletal muscle of healthy young adults by optimizing both AA delivery and utilization. However, aging is associated with a blunted response to anabolic stimuli and may involve impairments in endothelial function. We investigated whether age-related differences exist in the muscle protein anabolic response to AAs between younger (30 ± 2 yr) and older (67 ± 2 yr) adults when macrovascular and microvascular leg blood flow were similarly increased with the nitric oxide (NO) donor, sodium nitroprusside (SNP). Regardless of age, SNP+AA induced similar increases above baseline ( P ≤ 0.05) in macrovascular flow (4.3 vs. 4.4 ml·min−1·100 ml leg−1 measured using indocyanine green dye dilution), microvascular flow (1.4 vs. 0.8 video intensity/s measured using contrast-enhanced ultrasound), phenylalanine net balance (59 vs. 68 nmol·min−1·100 ml·leg−1), fractional synthetic rate (0.02 vs. 0.02%/h), and model-derived muscle protein synthesis (62 vs. 49 nmol·min−1·100 ml·leg−1) in both younger vs. older individuals, respectively. Provision of AAs during NO-induced local skeletal muscle hyperemia stimulates skeletal muscle protein metabolism in older adults to a similar extent as in younger adults. Our results suggest that the aging vasculature is responsive to exogenous NO and that there is no age-related difference per se in AA-induced anabolism under such hyperemic conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmed A. Saleh ◽  
Khairy Amber ◽  
Mohammed A. El-Magd ◽  
Mostafa S. Atta ◽  
Ahmed A. Mohammed ◽  
...  

This study was conducted to show the effect ofAspergillus awamori(AA),fructooligosaccharide(FOS), and combinedAspergillus awamoriandfructooligosaccharide(AA + FOS) on growth, digestibility, blood parameters, and expression of some growth-related genes. A total of 60 broiler chicks at the age of 15 d were divided into a control group (n=15) and 3 treatment groups. The control group was fed a basal diet, and the treatment groups were fed basal diets supplemented with 0.05% AA, 0.05% FOS, and combined of 0.05% AA and 0.05% FOS. Results from measurement of growth performance and digestibility revealed a significant increase in the body weight gain with improved feed conversion rate in the experimental groups. Interestingly, dry matter digestibility (DMD) and crude protein utilization (CPU) were improved. In addition, plasma total cholesterol and low density lipoprotein-cholesterol (LDL-C) were decreased, while plasma high density lipoprotein-cholesterol (HDL-C) was increased by feeding AA, FOS, and AA + FOS. Expressions of growth hormone secretagogue receptor (GHSR), insulin-like growth factor 1 (IGF-1), and insulin-like growth factor 1 receptor (IGF1R) were increased in experimental groups. In conclusion, the supplementation of eitherAspergillus awamoriorfructooligosaccharideor both improves digestibility and growth performance probably by promoting skeletal muscle protein metabolism.


2009 ◽  
Vol 34 (3) ◽  
pp. 377-381 ◽  
Author(s):  
Michael J. Rennie

In healthy active older persons, there is no derangement of muscle protein metabolism. However, there is a major deficit in the ability of older muscles to regulate their maintenance during feeding and exercise. The dose–response relationship between myofibrillar protein synthesis and the availability of essential amino acids (EAA) is shifted down and to the right, and giving extra amino acids is unable to overcome this. There is no sex difference in basal or fed muscle protein metabolism in the young, but postmenopausal women have a greater anabolic resistance than older men. Anabolic resistance is also shown by the decreased phosphorylation in the PKB–mTOR–eIF4BP1 pathway in response to increased EAA. The muscle synthetic system is refractory to EAA provision, irrespective of the availability of insulin, insulin-like growth factor 1, and growth hormone. However, insulin is a major regulator of muscle protein breakdown, and there is a blunting of the ability of older muscle to decrease proteolysis in response to low concentrations of insulin, such as those observed after a light breakfast. Providing more EAA seems not to be useful, and modern N-balance data confirm that the dietary protein requirements of older persons are not increased. The sigmoidal dose–response relationship between muscle protein synthesis and resistance exercise intensity is shifted downward and to the right in older men. Decreased physical activity itself, even in young subjects, can produce anabolic resistance of muscle protein synthesis, which cannot be overcome by increasing amino acid availability. Exercise may retune the amino acid and (or) insulin sensitivity of muscle in older people.


2013 ◽  
Vol 305 (12) ◽  
pp. E1483-E1494 ◽  
Author(s):  
Flávia A. Graça ◽  
Dawit A. P. Gonçalves ◽  
Wilian A. Silveira ◽  
Eduardo C. Lira ◽  
Valéria Ernestânia Chaves ◽  
...  

The physiological role of epinephrine in the regulation of skeletal muscle protein metabolism under fasting is unknown. We examined the effects of plasma epinephrine depletion, induced by adrenodemedullation (ADMX), on muscle protein metabolism in fed and 2-day-fasted rats. In fed rats, ADMX for 10 days reduced muscle mass, the cross-sectional area of extensor digitorum longus (EDL) muscle fibers, and the phosphorylation levels of Akt. In addition, ADMX led to a compensatory increase in muscle sympathetic activity, as estimated by the rate of norepinephrine turnover; this increase was accompanied by high rates of muscle protein synthesis. In fasted rats, ADMX exacerbated fasting-induced proteolysis in EDL but did not affect the low rates of protein synthesis. Accordingly, ADMX activated lysosomal proteolysis and further increased the activity of the ubiquitin (Ub)-proteasome system (UPS). Moreover, expression of the atrophy-related Ub ligases atrogin-1 and MuRF1 and the autophagy-related genes LC3b and GABARAPl1 were upregulated in EDL muscles from ADMX-fasted rats compared with sham-fasted rats, and ADMX reduced cAMP levels and increased fasting-induced Akt dephosphorylation. Unlike that observed for EDL muscles, soleus muscle proteolysis and Akt phosphorylation levels were not affected by ADMX. In isolated EDL, epinephrine reduced the basal UPS activity and suppressed overall proteolysis and atrogin-1 and MuRF1 induction following fasting. These data suggest that epinephrine released from the adrenal medulla inhibits fasting-induced protein breakdown in fast-twitch skeletal muscles, and these antiproteolytic effects on the UPS and lysosomal system are apparently mediated through a cAMP-Akt-dependent pathway, which suppresses ubiquitination and autophagy.


2019 ◽  
Vol 9 (4) ◽  
pp. 651-656 ◽  
Author(s):  
K. T. Erimbetov ◽  
O. V. Obvintseva ◽  
A. V. Fedorova ◽  
R. A. Zemlyanoy ◽  
A. G. Solovieva

This review highlights the current state of phenotypic mechanisms of regulation of muscle protein metabolism in animals. Since the skeletal muscle represents 40–50% of body mass in mammals it is a critical regulator of overall metabolism. Therefore, an understanding of the processes involved in the postnatal increase in muscle mass, with associated accumulation of protein, is fundamental. Throughout life, a delicate balance exists between protein synthesis and degradation that is essential for growth and normal health of humans and animals. Signaling pathways coordinate muscle protein balance. Anabolic and catabolic stimuli are integrated through the PKB/Akt-mTORC1 signaling to regulate mechanisms that control muscle protein synthesis and breakdown. At an early periods of intensive growth, muscle mass is stimulated by an increase in protein synthesis at the level of mRNA translation. Throughout the life, proteolytic processes including autophagy lysosomal system, ubiquitin proteasome pathway, calcium-dependent calpains and cysteine protease caspase enzyme cascade influence the growth of muscle mass. Several signal transmission networks direct and coordinate these processes along with quality control mechanisms to maintain protein homeostasis (proteostasis). Genetic factors, hormones, amino acids, phytoecdysteroids, and rhodanines affect the protein metabolism via signaling pathways, changing the ability and / or efficiency of muscle growth.


2003 ◽  
Vol 284 (5) ◽  
pp. E946-E953 ◽  
Author(s):  
Douglas Paddon-Jones ◽  
Melinda Sheffield-Moore ◽  
Daniel L. Creson ◽  
Arthur P. Sanford ◽  
Steven E. Wolf ◽  
...  

Debilitating injury is accompanied by hypercortisolemia, muscle wasting, and disruption of the normal anabolic response to food. We sought to determine whether acute hypercortisolemia alters muscle protein metabolism following ingestion of a potent anabolic stimulus: essential amino acids (EAA). A 27-h infusion (80 μg · kg−1 · h−1) of hydrocortisone sodium succinate mimicked cortisol (C) levels accompanying severe injury (>30 μg/dl), (C + AA; n = 6). The control group (AA) received intravenous saline ( n = 6). Femoral arteriovenous blood samples and muscle biopsies were obtained during a primed (2.0 μmol/kg) constant infusion (0.05 μmol · kg−1 · min−1) ofl-[ ring-2H5]phenylalanine before and after ingestion of 15 g of EAA. Hypercortisolemia [36.5 ± 2.1 (C + AA) vs. 9.0 ± 1.0 μg/dl (AA)] increased postabsorptive arterial, venous, and muscle intracellular phenylalanine concentrations. Hypercortisolemia also increased postabsorptive and post-EAA insulin concentrations. Net protein balance was blunted (40% lower) following EAA ingestion but remained positive for a greater period of time (60 vs. 180 min) in the C + AA group. Thus, although differences in protein metabolism were evident, EAA ingestion improved muscle protein anabolism during acute hypercortisolemia and may help minimize muscle loss following debilitating injury.


Sign in / Sign up

Export Citation Format

Share Document