scholarly journals Granulosa Cell-Specific Inactivation of Follistatin Causes Female Fertility Defects

2004 ◽  
Vol 18 (4) ◽  
pp. 953-967 ◽  
Author(s):  
Carolina J. Jorgez ◽  
Michal Klysik ◽  
Soazik P. Jamin ◽  
Richard R. Behringer ◽  
Martin M. Matzuk

Abstract Follistatin plays an important role in female physiology by regulating FSH levels through blocking activin actions. Failure to regulate FSH has been implicated as a potential cause of premature ovarian failure. Premature ovarian failure is characterized by amenorrhea, infertility, and elevated gonadotropin levels in women under the age of 40. Because follistatin is essential for postnatal viability, we designed a cre/loxP conditional knockout system to render the follistatin gene null specifically in the granulosa cells of the postnatal ovary using Amhr2cre transgenic mice. The follistatin conditional knockout females develop fertility defects, including reduced litter number and litter sizes and, in the most severe case, infertility. Reduced numbers of ovarian follicles, ovulation and fertilization defects, elevated levels of serum FSH and LH, and reduced levels of testosterone were observed in these mice. These findings demonstrate that compromising granulosa cell follistatin function leads to findings similar to those characterized in premature ovarian failure. Follistatin conditional knockouts may therefore be a useful model with which to further study this human syndrome. These studies are the first report of a granulosa cell-specific deletion of a gene in the postnatal ovary and have important implications for future endeavors to generate ovary-specific knockout mouse models.

2017 ◽  
Vol 13 (1) ◽  
pp. 195-215 ◽  
Author(s):  
Hiromi Miura ◽  
Rolen M Quadros ◽  
Channabasavaiah B Gurumurthy ◽  
Masato Ohtsuka

Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1057-1066 ◽  
Author(s):  
Suzannah A. Williams ◽  
Pamela Stanley

Premature ovarian failure (POF) affects up to 1.4% of women under the age of 40 yr and less than 30% of cases have a known cause. Here we describe a new mouse model of POF resulting from oocyte-specific ablation of core 1-derived (mucin) O-glycans and complex and hybrid N-glycans. Females carrying floxed alleles of both the C1galt1 (T-syn) and Mgat1 glycosyltransferase genes and a ZP3Cre transgene, generate oocytes lacking complex O- and N-glycans following oocyte-specific deletion at the primary follicle stage. We previously showed that few double-mutant females are fertile, and those produce only a single small litter. Here we show that ovarian function declined rapidly in double-mutant females with less than 1% ovulating at 11 wk of age after superovulation with exogenous gonadotropins. Ovary weight was significantly decreased in double-mutant females by 3 months of age, consistent with a decrease in the number of developing follicles. FSH levels in double-mutant females were elevated at 3 months of age, and testosterone and inhibin A were decreased, showing that the loss of complex N- and O-glycans from oocyte glycoproteins affected hypothalamic-pituitary-gonadal feedback loops. The absence of developing follicles, ovary dysfunction, reduced testosterone and inhibin A, and elevated FSH in double-mutant females lacking C1galt1 and Mgat1 in oocytes represents a new mouse model for the study of follicular POF.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2218-2218
Author(s):  
Matthew P Parker ◽  
Halyna Fedosyuk ◽  
Lesya V Novikova ◽  
Zhen Zhang ◽  
Chad Slawson ◽  
...  

Understanding the molecular mechanisms of erythropoiesis is critical for treating anemia and other hematopoietic diseases, which affect roughly 3 million Americans and 28% of the global population. The role of post-translational modification (PTM) of proteins in regulating developmental and differentiation processes is understudied, but recently we established that O-GlcNAcylation regulates erythropoiesis. O-GlcNAc regulates numerous cellular functions, including stress response, transcription, and cell cycle progression. O-GlcNAc is a single O-linked β-N-acetyl-D-glucosamine moiety added to serine/threonine amino acids of nuclear, cytoplasmic, and mitochondrial proteins. O-GlcNAc transferase (OGT), which adds the modification, and O-GlcNAcase (OGA), which removes the modification, are responsible for the dynamic processing of the PTM. In response to environmental cues, the variable cycling of O-GlcNAc on and off proteins has potential effects on transcriptional pathways essential for differentiation. Previously, we demonstrated that O-GlcNAc plays a role in regulating human γ-globin gene transcription during development in human β-globin locus yeast artificial chromosome (β-YAC) transgenic mice and derivative immortalized bone marrow cells. O-GlcNAcylation modulates the formation of a GATA-1-FOG-1-NuRD repressor complex that binds the -566 GATA site of the Aγ-globin promoter when γ-globin gene expression is silent. OGT and OGA interact with GATA-1 and CHD4, a component of the NuRD complex. O-GlcNAcylation of CHD4 stimulates the formation of this repressor complex, blocking O-GlcNAcylation of CHD4 maintains Aγ-globin gene expression. Thus, O-GlcNAc cycling is a novel γ-globin regulatory mechanism, which might be modulated to increase fetal hemoglobin (HbF). Since O-GlcNAcylation involves input from multiple metabolic pathways, the modification acts as a general sensor of cellular homeostasis. Thus, in response to environmental cues, the addition and removal of O-GlcNAc from proteins may be variably altered with potential effects on biochemical and transcriptional pathways essential for erythropoiesis. To better understand how O-GlcNAcylation affects erythropoiesis in vivo, we developed several new, innovative mouse models. These include erythroid-specific OGT or OGA conditional knockout mice, and transgenic mice with erythroid-specific enforced expression of human OGT or OGA. OGT is an essential gene; erythroid-specific knockout results in fetal death due to severe anemia between day E12-14. OGA is not essential for erythropoiesis; no overt phenotype is observed. Based on previous our previous studies, we hypothesize that at the onset of erythroid lineage commitment, GATA-1 functions as an adaptor protein to deliver OGT and OGA to erythroid-specific cis-regulatory DNA elements, where they modify transcription complex or chromatin proteins responsible for directing transcriptional networks necessary for normal erythroid development and terminal differentiation. Currently, we are exploring how GATA-1-adaptor function mediates changes in the global O-GlcNAcylation pattern following the GATA-2 to GATA-1 switch that triggers erythroid differentiation. We are also examining the roles of OGT and OGA in the formation and function of the GATA-1-FOG-1-NuRD γ-globin repressor complex. Novel CRISPR/Cas9-based genome targeting tools were developed to probe these questions. We present phenotypic and molecular data related to the hematopoietic system, including anemia, blood cell histology and morphology, standard blood indices, and β-like globin gene expression during embryonic, fetal, and adult stages of erythropoiesis in our mouse models. In addition, we will show preliminary data using the enzymatically dead dCas9 tools we have synthesized, dCas9-OGT and dCas9-OGA protein fusions that are delivered to cis-regulatory elements controlling erythroid-specific genes involved in erythropoiesis and globin gene switching. The therapeutic outcome will be the identification of erythroid-specific protein targets whose activity can be modulated by altering their O-GlcNAcylation status. We emphasize that because the O-GlcNAc cycle has pleiotropic effects within the cell, it is not a good direct target for therapeutic intervention. However, many of the target proteins are likely to be suitable for treatment venues. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 7 (6) ◽  
pp. e2281-e2281 ◽  
Author(s):  
Su-Ren Chen ◽  
J-X Tang ◽  
J-M Cheng ◽  
X-X Hao ◽  
Y-Q Wang ◽  
...  

2017 ◽  
Author(s):  
Hiromi Miura ◽  
Rolen M. Quadros ◽  
Channabasavaiah B. Gurumurthy ◽  
Masato Ohtsuka

The CRISPR/Cas9 tool can easily generate knockout mouse models by disrupting the gene sequence, but its efficiency for creating models that require either insertion of exogenous DNA (knock-in) or replacement of genomic segments is very poor. The majority of mouse models used in research are knock-in (reporters or recombinases) or gene-replacement (for example, conditional knockout alleles containing LoxP sites flanked exons). A few methods for creating such models are reported using double-stranded DNA as donors, but their efficiency is typically 1–10% and therefore not suitable for routine use. We recently demonstrated that long single-stranded DNAs serve as very efficient donors, both for insertion and for gene replacement. We call this method Easi-CRISPR (efficient additions with ssDNA inserts-CRISPR), a highly efficient technology (typically 25%-50%, and up to 100% in some cases), one that has worked at over a dozen loci thus far. Here, we provide detailed protocols for Easi-CRISPR.


Endocrinology ◽  
2020 ◽  
Vol 161 (5) ◽  
Author(s):  
Luisina Ongaro ◽  
Gauthier Schang ◽  
Ziyue Zhou ◽  
T Rajendra Kumar ◽  
Mathias Treier ◽  
...  

Abstract Follicle-stimulating hormone (FSH), an essential regulator of mammalian fertility, is synthesized by pituitary gonadotrope cells in response to activins. In mice, activins signal via SMAD3, SMAD4, and FOXL2 to regulate transcription of the FSHβ subunit (Fshb) gene. Gonadotrope-specific deletion of Foxl2, alone or in combination with Smad4, renders mice FSH-deficient. Whether human FSHB expression is similarly regulated is not known. Here, we used a combination of transgenic and conditional knockout mouse strains to assess the roles of activins, FOXL2, and SMAD4 in regulation of the human FSHB gene. First, we cultured pituitaries from mice harboring a human FSHB transgene (hFSHB mice) and measured both murine Fshb and human FSHB messenger ribonucleic acid (mRNA) expression in response to exogenous activins or two antagonists of endogenous activin-like signaling (follistatin-288 and SB431542). Both murine Fshb and human FSHB expression were stimulated by activins and reduced by the inhibitors. Next, we analyzed human FSHB expression in hFSHB mice carrying floxed Foxl2 and Smad4 alleles. Cre-mediated ablation of FOXL2 and SMAD4 strongly reduced basal and activin-stimulated murine Fshb and human FSHB expression in cultured pituitaries. Finally, the hFSHB transgene was previously shown to rescue FSH production and fertility in Fshb knockout mice. However, gonadotrope-specific Foxl2/Smad4 knockout females carrying the hFSHB transgene have significantly reduced murine Fshb and human FSHB pituitary mRNA levels and are hypogonadal. Collectively, these data suggest that similar to Fshb regulation in mice, FOXL2 and SMAD4 play essential roles in human FSHB expression.


Sign in / Sign up

Export Citation Format

Share Document