scholarly journals Dax1 Up-Regulates Oct4 Expression in Mouse Embryonic Stem Cells via LRH-1 and SRA

2010 ◽  
Vol 24 (12) ◽  
pp. 2281-2291 ◽  
Author(s):  
Victoria R. Kelly ◽  
Bin Xu ◽  
Rork Kuick ◽  
Ronald J. Koenig ◽  
Gary D. Hammer

Abstract Dax1 (Nr0b1) is an atypical orphan nuclear receptor that has recently been shown to play a role in mouse embryonic stem (mES) cell pluripotency. Here we describe a mechanism by which Dax1 maintains pluripotency. In steroidogenic cells, Dax1 protein interacts with the NR5A nuclear receptor steroidogenic factor 1 (Nr5a1) to inhibit transcription of target genes. In mES cells, liver receptor homolog 1 (LRH-1, Nr5a2), the other NR5A family member, is expressed, and LRH-1 has been shown to interact with Dax1. We demonstrate by coimmunoprecipitation that Dax1 is, indeed, able to form a complex with LRH-1 in mES cells. Because Dax1 was historically characterized as an inhibitor of steroidogenic factor 1-mediated transcriptional activation, we hypothesized that Dax1 would inhibit LRH-1 action in mES cells. Therefore, we examined the effect of Dax1 on the LRH-1-mediated activation of the critical ES cell factor Oct4 (Pou5f1). Chromatin immunoprecipitation localized Dax1 to the Oct4 promoter at the LRH-1 binding site, and luciferase assays together with Dax1 overexpression and knockdown experiments revealed that, rather than repress, Dax1 accentuated LRH-1-mediated activation of the Oct4 gene. Similar to our previously published studies that defined the RNA coactivator steroid receptor RNA activator as the critical mediator of Dax1 coactivation function, Dax1 augmentation of LRH-1-mediated Oct4 activation is dependent upon steroid receptor RNA activator. Finally, utilizing published chromatin immunoprecipitation data of whole-genome binding sites of LRH-1 and Dax1, we show that LRH-1 and Dax1 commonly colocalize at 288 genes (43% of LRH-1 target genes), many of which are involved in mES cell pluripotency. Thus, our results indicate that Dax1 plays an important role in the maintenance of pluripotency in mES cells through interaction with LRH-1 and transcriptional activation of Oct4 and other genes.

2009 ◽  
Vol 29 (7) ◽  
pp. 1719-1734 ◽  
Author(s):  
Bin Xu ◽  
Wei-Hsiung Yang ◽  
Isabelle Gerin ◽  
Chang-Deng Hu ◽  
Gary D. Hammer ◽  
...  

ABSTRACT The nuclear receptor steroidogenic factor 1 (SF-1) is essential for adrenal development and steroidogenesis. The atypical orphan nuclear receptor Dax-1 binds to SF-1 and represses SF-1 target genes. Paradoxically, however, loss-of-function mutations of Dax-1 also cause adrenal hypoplasia, suggesting that Dax-1 may function as an SF-1 coactivator under some circumstances. Indeed, we found that Dax-1 can function as a dosage-dependent SF-1 coactivator. Both SF-1 and Dax-1 bind to steroid receptor RNA activator (SRA), a coactivator that functions as an RNA. The coactivator TIF2 also associates with Dax-1 and synergistically coactivates SF-1 target gene transcription. A naturally occurring Dax-1 mutation inhibits this transactivation, and the mutant Dax-1-TIF2 complex mislocalizes in living cells. Coactivation by Dax-1 is abolished by SRA knockdown. The expression of the steroidogenic gene products steroidogenic acute regulatory protein (StAR) and melanocortin 2 receptor is reduced in adrenal Y1 cells following the knockdown of endogenous SRA. Similarly, the knockdown of endogenous Dax-1 downregulates the expression of the steroidogenic gene products CYP11A1 and StAR in both H295R adrenal and MA-10 Leydig cells. These findings reveal novel functions of SRA and Dax-1 in steroidogenesis and adrenal biology.


1995 ◽  
Vol 350 (1333) ◽  
pp. 279-283 ◽  

The cytochrome P450 steroid hydroxylases exhibit tissue-specific and developmentally regulated gene expression. Recent studies showed that the orphan nuclear receptor steroidogenic factor 1 (SF-1) plays a key role in their gene regulation. In mouse embryos, SF-1 expression began at the inception of adrenal and gonadal development, suggesting that SF-1 plays a key role in the steroidogenic cell differentiation. SF-1 was also expressed in the developing pituitary gland and diencephalon, which raised the possibility that it also has additional roles in endocrine development. To examine the role of SF-1 in intact mice, we disrupted the gene encoding SF-1 by homologous recombination in embryonic stem cells; this approach ultimately permitted us to generate SF-1 knockout mice in which the gene encoding SF-1 was inactivated. These studies revealed essential roles of SF-1 in endocrine development that included adrenal and gonadal development, expression of several markers of pituitary gonadotropes, and formation of the ventromedial hypothalamic (VMH) nucleus. These results indicate that SF-1 acts at multiple levels of the reproductive axis to maintain reproductive competence.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2870-2882 ◽  
Author(s):  
Unmesh Jadhav ◽  
J. Larry Jameson

Steroidogenic factor 1 (SF-1) is essential for the development and function of steroidogenic tissues. Stable incorporation of SF-1 into embryonic stem cells (SF-1-ES cells) has been shown to prime the cells for steroidogenesis. When provided with exogenous cholesterol substrate, and after treatment with retinoic acid and cAMP, SF-1-ES cells produce progesterone but do not produce other steroids such as cortisol, estradiol, or testosterone. In this study, we explored culture conditions that optimize SF-1-mediated differentiation of ES cells into defined steroidogenic lineages. When embryoid body formation was used to facilitate cell lineage differentiation, SF-1-ES cells were found to be restricted in their differentiation, with fewer cells entering neuronal pathways and a larger fraction entering the steroidogenic lineage. Among the differentiation protocols tested, leukemia inhibitory factor (LIF) removal, followed by prolonged cAMP treatment was most efficacious for inducing steroidogenesis in SF-1-ES cells. In this protocol, a subset of SF-1-ES cells survives after LIF withdrawal, undergoes morphologic differentiation, and recovers proliferative capacity. These cells are characterized by induction of steroidogenic enzyme genes, use of de novo cholesterol, and production of multiple steroids including estradiol and testosterone. Microarray studies identified additional pathways associated with SF-1 mediated differentiation. Using biotinylated SF-1 in chromatin immunoprecipitation assays, SF-1 was shown to bind directly to multiple target genes, with induction of binding to some targets after steroidogenic treatment. These studies indicate that SF-1 expression, followed by LIF removal and treatment with cAMP drives ES cells into a steroidogenic pathway characteristic of gonadal steroid-producing cells.


2015 ◽  
Vol 35 (6) ◽  
pp. 1014-1025 ◽  
Author(s):  
Arvind Shakya ◽  
Catherine Callister ◽  
Alon Goren ◽  
Nir Yosef ◽  
Neha Garg ◽  
...  

The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT ( fa cilitates c hromatin t ransactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion.


1993 ◽  
Vol 13 (2) ◽  
pp. 861-868
Author(s):  
T E Wilson ◽  
A R Mouw ◽  
C A Weaver ◽  
J Milbrandt ◽  
K L Parker

As part of its trophic action to maintain the steroidogenic capacity of adrenocortical cells, corticotropin (ACTH) increases the transcription of the cytochrome P-450 steroid hydroxylase genes, including the gene encoding steroid 21-hydroxylase (21-OHase). We previously identified several promoter elements that regulate 21-OHase gene expression in mouse Y1 adrenocortical tumor cells. One of these elements, located at nucleotide -65, closely resembles the recognition sequence of the orphan nuclear receptor NGFI-B, suggesting that NGFI-B regulates this essential steroidogenic enzyme. To explore this possibility, we first used in situ hybridization to demonstrate high levels of NGFI-B transcripts in the adrenal cortex of the adult rat. In cultured mouse Y1 adrenocortical cells, treatment with ACTH, the major regulator of 21-OHase transcription, rapidly increased NGFI-B expression. Gel mobility shift and DNase I footprinting experiments showed that recombinantly expressed NGFI-B interacts specifically with the 21-OHase -65 element and identified one complex formed by Y1 extracts and the 21-OHase -65 element that contains NGFI-B. Expression of NGFI-B significantly augmented the activity of the intact 21-OHase promoter, while mutations of the -65 element that abolish NGFI-B binding markedly diminished NGFI-B-mediated transcriptional activation. Specific mutations of NGFI-B shown previously to impair either DNA binding or transcriptional activation diminished the effect of NGFI-B coexpression on 21-OHase expression. Finally, an oligonucleotide containing the NGFI-B response element conferred ACTH response to a core promoter from the prolactin gene, showing that this element is sufficient for ACTH induction. Collectively, these results identify a cellular promoter element that is regulated by NGFI-B and implicate NGFI-B in the transcriptional induction of 21-OHase by ACTH.


2020 ◽  
Vol 6 (18) ◽  
pp. eaaz8031 ◽  
Author(s):  
Leiming Wang ◽  
Chiang-Min Cheng ◽  
Jun Qin ◽  
Mafei Xu ◽  
Chung-Yang Kao ◽  
...  

The orphan nuclear receptor COUP-TFII is expressed at a low level in adult tissues, but its expression is increased and shown to promote progression of multiple diseases, including prostate cancer, heart failure, and muscular dystrophy. Suppression of COUP-TFII slows disease progression, making it an intriguing therapeutic target. Here, we identified a potent and specific COUP-TFII inhibitor through high-throughput screening. The inhibitor specifically suppressed COUP-TFII activity to regulate its target genes. Mechanistically, the inhibitor directly bound to the COUP-TFII ligand-binding domain and disrupted COUP-TFII interaction with transcription regulators, including FOXA1, thus repressing COUP-TFII activity on target gene regulation. Through blocking COUP-TFII’s oncogenic activity in prostate cancer, the inhibitor efficiently exerted a potent antitumor effect in xenograft mouse models and patient-derived xenograft models. Our study identified a potent and specific COUP-TFII inhibitor that may be useful for the treatment of prostate cancer and possibly other diseases.


2003 ◽  
Vol 23 (22) ◽  
pp. 7947-7956 ◽  
Author(s):  
Jiangming Luo ◽  
Robert Sladek ◽  
Julie Carrier ◽  
Jo-Ann Bader ◽  
Denis Richard ◽  
...  

ABSTRACT The estrogen-related receptor α (ERRα) is an orphan member of the superfamily of nuclear hormone receptors expressed in tissues that preferentially metabolize fatty acids. Despite the molecular characterization of ERRα and identification of target genes, determination of its physiological function has been hampered by the lack of a natural ligand. To further understand the in vivo function of ERRα, we generated and analyzed Estrra-null (ERRα−/−) mutant mice. Here we show that ERRα−/− mice are viable, fertile and display no gross anatomical alterations, with the exception of reduced body weight and peripheral fat deposits. No significant changes in food consumption and energy expenditure or serum biochemistry parameters were observed in the mutant animals. However, the mutant animals are resistant to a high-fat diet-induced obesity. Importantly, DNA microarray analysis of gene expression in adipose tissue demonstrates altered regulation of several enzymes involved in lipid, eicosanoid, and steroid synthesis, suggesting that the loss of ERRα might interfere with other nuclear receptor signaling pathways. In addition, the microarray study shows alteration in the expression of genes regulating adipogenesis as well as energy metabolism. In agreement with these findings, metabolic studies showed reduced lipogenesis in adipose tissues. This study suggests that ERRα functions as a metabolic regulator and that the ERRα−/− mice provide a novel model for the investigation of metabolic regulation by nuclear receptors.


Sign in / Sign up

Export Citation Format

Share Document