scholarly journals Reduction of Coactivator Expression by Antisense Oligodeoxynucleotides Inhibits ERα Transcriptional Activity and MCF-7 Proliferation

2002 ◽  
Vol 16 (2) ◽  
pp. 253-270 ◽  
Author(s):  
Ilaria T. R. Cavarretta ◽  
Ratna Mukopadhyay ◽  
David M. Lonard ◽  
Lex M. Cowsert ◽  
C. Frank Bennett ◽  
...  

Abstract Steroid receptor RNA activator (SRA) is a novel coactivator for steroid receptors that acts as an RNA molecule, whereas steroid receptor coactivator (SRC) family members, such as steroid receptor coactivator-1 (SRC-1) and transcriptional intermediary factor 2 (TIF2) exert their biological effects as proteins. Individual overexpression of each of these coactivators, which can form multimeric complexes in vivo, results in stimulated ERα transcriptional activity in transient transfection assays. However there is no information on the consequences of reducing SRC-1, TIF2, or SRA expression, singly or in combination, on ERα transcriptional activity. We therefore developed antisense oligodeoxynucleotides (asODNs) to SRA, SRC-1, and TIF2 mRNAs, which rapidly and specifically reduced the expression of each of these coactivators. ERα-dependent gene expression was reduced in a dose-dependent fashion by up to 80% in cells transfected with these oligonucleotides. Furthermore, treatment of cells with combinations of SRA, SRC-1, and TIF2 asODNs reduced ERα transcriptional activity to an extent greater than individual asODN treatment alone, suggesting that these coactivators cooperate, in at least an additive fashion, to activate ERα-dependent target gene expression. Finally, treatment of MCF-7 cells with asODN against SRC-1 and TIF2 revealed a requirement of these coactivators, but not SRA, for hormone-dependent DNA synthesis and induction of estrogen-dependent pS2 gene expression, indicating that SRA and SRC family coactivators can fulfill specific functional roles. Taken together, we have developed a rapid method to reduce endogenous coactivator expression that enables an assessment of the in vivo role of specific coactivators on ERα biological action and avoids potential artifacts arising from overexpression of coactivators in transient transfection assays.

2003 ◽  
Vol 30 (3) ◽  
pp. 411-422 ◽  
Author(s):  
HM Sheppard ◽  
S Matsuda ◽  
JC Harries ◽  
KB Kindle ◽  
DM Heery

Steroid receptors activate transcription in yeast cells via interactions with endogenous coactivators and/or basal factors. We examined the effects of mutations in the ligand binding domain on the transcriptional activity of ERalpha in yeast. Our results show that mutations in Helix 3 (K366A) and Helix 12 (M547A, L548A) disrupt transcriptional activity of ERalpha in yeast, as previously observed in mammalian cells. However, replacement of a conserved tyrosine residue in Helix 12 with alanine or aspartate (Y541A and Y541D), which renders ERalpha constitutively active in mammalian cells, had only a weak stimulatory effect on ligand-independent reporter activation by ERalpha in yeast. Two-hybrid interaction experiments revealed that a Y541A mutant expressed in yeast was capable of ligand-independent binding to a mammalian coactivator, suggesting that there is a subtle difference in how this mutant interacts with mammalian and yeast cofactors. We also show that the ligand-dependent activities of ERalpha and progesterone receptor (PR) in yeast cells were strongly enhanced by the human p160 protein steroid receptor coactivator (SRC1), but not by CREB-Binding Protein (CBP) or the p300/CBP associated factor (P/CAF). Although the SRC1 activation domains AD1 and AD2 are functional in yeast, deletion of these sequences only partially impaired SRC1 coactivator function in this organism; this is in contrast to similar experiments in mammalian cells. Thus SRC1 sequences involved in recruitment of CBP/p300 and Co-Activator-Associated Arginine Methyltransferase (CARM-1) in mammalian cells are not essential for its function in yeast, suggesting that SRC1 operates via distinct mechanisms in yeast and mammalian cells.


2005 ◽  
Vol 25 (21) ◽  
pp. 9687-9699 ◽  
Author(s):  
Ping Yi ◽  
Ray-Chang Wu ◽  
Joshua Sandquist ◽  
Jiemin Wong ◽  
Sophia Y. Tsai ◽  
...  

ABSTRACT Steroid receptor coactivator 3 (SRC-3/AIB1) interacts with steroid receptors in a ligand-dependent manner to activate receptor-mediated transcription. A number of intracellular signaling pathways initiated by growth factors and hormones induce phosphorylation of SRC-3, regulating its function and contributing to its oncogenic potential. However, the range of mechanisms by which phosphorylation affects coactivator function remains largely undefined. We demonstrate here that peptidyl-prolyl isomerase 1 (Pin1), which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, interacts selectively with phosphorylated SRC-3. In addition, Pin1 and SRC-3 activate nuclear-receptor-regulated transcription synergistically. Depletion of Pin1 by small interfering RNA (siRNA) reduces hormone-dependent transcription from both transfected reporters and an endogenous steroid receptor target gene. We present evidence that Pin1 modulates interactions between SRC-3 and CBP/p300. The interaction is enhanced in vitro and in vivo by Pin1 and diminished when cellular Pin1 is reduced by siRNA or in stable Pin1-depleted cell lines. Depletion of Pin1 in MCF-7 human breast cancer cells reduces the endogenous estrogen-dependent recruitment of p300 to the promoters of estrogen receptor-dependent genes. Pin1 overexpression enhanced SRC-3 cellular turnover, and depletion of Pin1 stabilized SRC-3. Our results suggest that Pin1 functions as a transcriptional coactivator of nuclear receptors by modulating SRC-3 coactivator protein-protein complex formation and ultimately by also promoting the turnover of the activated SRC-3 oncoprotein.


2019 ◽  
Vol 97 (4) ◽  
pp. 488-496
Author(s):  
Yi Zhang ◽  
Wei Shi

Steroid receptor coactivator 1 (SRC-1) is a transcriptional coactivator for steroid receptors and other transcription factors. SRC-1 has been shown to play an important role in the progression of breast cancer and prostate cancer. However, its role in glioma progression remains unknown. Here, in this study, we report that SRC-1 is upregulated in the vessels of human glioma and exerts important regulatory functions. Specifically, SRC-1 expression significantly enhanced basic fibroblast growth factor (bFGF)-mediated angiogenesis in vivo. Downregulating of SRC-1 expression suppressed endothelial cell migration and tube formation in vitro and upregulated the expression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metallopeptidase (MMP)-9 in glioma cells. These SRC-1-mediated effects were dependent on the activation of polyomavirus enhancer activator 3 (PEA3) transcriptional activity. VEGF and VEGF inducer GS4012 induced the direct binding of SRC-1 and PEA3 in glioma cells, and PEA3 could directly bind with VEGF and MMP-9 promoter under GS4012 treatment in glioma cell. The expression of pro-angiogenic factors induced by SRC-1 was abrogated by sh-PEA3 knockdown. Taken together, these novel outcomes indicated that SRC-1 modulated endothelial cell (EC) function and facilitated a pro-angiogenic microenvironment through PEA3 signaling. Moreover, a combination of targeting SRC-1 and PEA3 signaling in glioma could be a promising strategy for suppressing tumor angiogenesis.


1999 ◽  
Vol 276 (4) ◽  
pp. C883-C891 ◽  
Author(s):  
Carola E. Wright ◽  
F. Haddad ◽  
A. X. Qin ◽  
P. W. Bodell ◽  
K. M. Baldwin

Cardiac β-myosin heavy chain (β-MHC) gene expression is mainly regulated through transcriptional processes. Although these results are based primarily on in vitro cell culture models, relatively little information is available concerning the interaction of key regulatory factors thought to modulate MHC expression in the intact rodent heart. Using a direct gene transfer approach, we studied the in vivo transcriptional activity of different-length β-MHC promoter fragments in normal control and in altered thyroid states. The test β-MHC promoter was fused to a firefly luciferase reporter gene, whereas the control α-MHC promoter was fused to the Renilla luciferase reporter gene and was used to account for variations in transfection efficiency. Absolute reporter gene activities showed that β- and α-MHC genes were individually and reciprocally regulated by thyroid hormone. The β-to-α ratios of reporter gene expression demonstrated an almost threefold larger β-MHC gene expression in the longest than in the shorter promoter fragments in normal control animals, implying the existence of an upstream enhancer. A mutation in the putative thyroid response element of the −408-bp β-MHC promoter construct caused transcriptional activity to drop to null. When studied in the −3,500-bp β-MHC promoter, construct activity was reduced (∼100-fold) while thyroid hormone responsiveness was retained. These findings suggest that, even though the bulk of the thyroid hormone responsiveness of the gene is contained within the first 215 bp of the β-MHC promoter sequence, the exact mechanism of triiodothyronine (T3) action remains to be elucidated.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Snigdha Poddar ◽  
Jaclyn Tanaka ◽  
Jamie H. D. Cate ◽  
Brian Staskawicz ◽  
Myeong-Je Cho

Abstract Background An efficient in vivo transient transfection system using protoplasts is an important tool to study gene expression, metabolic pathways, and multiple mutagenesis parameters in plants. Although rice protoplasts can be isolated from germinated seedlings or cell suspension culture, preparation of those donor tissues can be inefficient, time-consuming, and laborious. Additionally, the lengthy process of protoplast isolation and transfection needs to be completed in a single day. Results Here we report a protocol for the isolation of protoplasts directly from rice calli, without using seedlings or suspension culture. The method is developed to employ discretionary pause points during protoplast isolation and before transfection. Protoplasts maintained within a sucrose cushion partway through isolation, for completion on a subsequent day, per the first pause point, are referred to as S protoplasts. Fully isolated protoplasts maintained in MMG solution for transfection on a subsequent day, per the second pause point, are referred to as M protoplasts. Both S and M protoplasts, 1 day after initiation of protoplast isolation, had minimal loss of viability and transfection efficiency compared to protoplasts 0 days after isolation. S protoplast viability decreases at a lower rate over time than that of M protoplasts and can be used with added flexibility for transient transfection assays and time-course experiments. The protoplasts produced by this method are competent for transfection of both plasmids and ribonucleoproteins (RNPs). Cas9 RNPs were used to demonstrate the utility of these protoplasts to assay genome editing in vivo. Conclusion The current study describes a highly effective and accessible method to isolate protoplasts from callus tissue induced from rice seeds. This method utilizes donor materials that are resource-efficient and easy to propagate, permits convenience via pause points, and allows for flexible transfection days after protoplast isolation. It provides an advantageous and useful platform for a variety of in vivo transient transfection studies in rice.


2002 ◽  
Vol 16 (12) ◽  
pp. 2819-2827 ◽  
Author(s):  
Qiao Li ◽  
Anna Su ◽  
Jihong Chen ◽  
Yvonne A. Lefebvre ◽  
Robert J. G. Haché

Abstract The effects of acetylation on gene expression are complex, with changes in chromatin accessibility intermingled with direct effects on transcriptional regulators. For the nuclear receptors, both positive and negative effects of acetylation on specific gene transcription have been observed. We report that p300 and steroid receptor coactivator 1 interact transiently with the glucocorticoid receptor and that the acetyltransferase activity of p300 makes an important contribution to glucocorticoid receptor-mediated transcription. Treatment of cells with the deacetylase inhibitor, sodium butyrate, inhibited steroid-induced transcription and altered the transient association of glucocorticoid receptor with p300 and steroid receptor coactivator 1. Additionally, sustained sodium butyrate treatment induced the degradation of p300 through the 26S proteasome pathway. Treatment with the proteasome inhibitor MG132 restored both the level of p300 protein and the transcriptional response to steroid over 20 h of treatment. These results reveal new levels for the regulatory control of gene expression by acetylation and suggest feedback control on p300 activity.


2006 ◽  
Vol 26 (17) ◽  
pp. 6571-6583 ◽  
Author(s):  
Atish Mukherjee ◽  
Selma M. Soyal ◽  
Rodrigo Fernandez-Valdivia ◽  
Martine Gehin ◽  
Pierre Chambon ◽  
...  

ABSTRACT Although the essential involvement of the progesterone receptor (PR) in female reproductive tissues is firmly established, the coregulators preferentially enlisted by PR to mediate its physiological effects have yet to be fully delineated. To further dissect the roles of members of the steroid receptor coactivator (SRC)/p160 family in PR-mediated reproductive processes in vivo, state-of-the-art cre-loxP engineering strategies were employed to generate a mouse model (PR Cre/+ SRC-2 flox/flox) in which SRC-2 function was abrogated only in cell lineages that express the PR. Fertility tests revealed that while ovarian activity was normal, PR Cre/+ SRC-2 flox/flox mouse uterine function was severely compromised. Absence of SRC-2 in PR-positive uterine cells was shown to contribute to an early block in embryo implantation, a phenotype not shared by SRC-1 or -3 knockout mice. In addition, histological and molecular analyses revealed an inability of the PR Cre/+ SRC-2 flox/flox mouse uterus to undergo the necessary cellular and molecular changes that precede complete P-induced decidual progression. Moreover, removal of SRC-1 in the PR Cre/+ SRC-2 flox/flox mouse uterus resulted in the absence of a decidual response, confirming that uterine SRC-2 and -1 cooperate in P-initiated transcriptional programs which lead to full decidualization. In the case of the mammary gland, whole-mount and histological analysis disclosed the absence of significant ductal side branching and alveologenesis in the hormone-treated PR Cre/+ SRC-2 flox/flox mammary gland, reinforcing an important role for SRC-2 in cellular proliferative changes that require PR. We conclude that SRC-2 is appropriated by PR in a subset of transcriptional cascades obligate for normal uterine and mammary morphogenesis and function.


Sign in / Sign up

Export Citation Format

Share Document