Contralateral Sensory and Pain Perception Changes in Patients With Unilateral Neuropathy

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012229
Author(s):  
Elena Enax-Krumova ◽  
Nadine Attal ◽  
Didier Bouhassira ◽  
Rainer Freynhagen ◽  
Janne Gierthmühlen ◽  
...  

Objective:To test whether contralateral sensory abnormalities in the clinically unaffected area of patients with unilateral neuropathic pain are due to the neuropathy or pain mechanisms.Methods:We analyzed the contralateral clinically unaffected side of patients with unilateral painful or painless neuropathy (peripheral nerve injury, PNI; postherpetic neuropathy, PHN; radiculopathy) by standardized quantitative sensory testing following a validated protocol. Primary outcome was the independent contribution of the following variables on the contralateral sensory function using generalized linear regression models: pain intensity, disease duration, etiology, body area, and sensory patterns in the most painful area.Results:Among 424 patients (PNI: n=256; PHN: n=78, radiculopathy: n=90) contralateral sensory abnormalities were frequent in both painful (n=383) and painless (n=41) unilateral neuropathy, demonstrating sensory loss for thermal and mechanical non-painful stimuli and both sensory loss and gain for painful test stimuli. Analysis by etiology revealed contralateral pinprick hyperalgesia in PHN and PNI. Analysis by ipsilateral sensory phenotype demonstrated mirror-image pinprick hyperalgesia in both mechanical and thermal hyperalgesia phenotypes. Pain intensity, etiology and affected body region predicted changes in only single contralateral somatosensory parameters. Disease duration had no impact on the contralateral sensory function.Conclusion:Mechanisms of sensory loss seems to spread to the contralateral side in both painful and painless neuropathies. Contralateral spread of pinprick hyperalgesia was restricted to the two ipsilateral phenotypes that suggest sensitization; this suggest a contribution of descending net facilitation from supraspinal areas, which was reported in rodent models of neuropathic pain, but not yet in human patients.

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1350 ◽  
Author(s):  
Willias Masocha

Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker) immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC) at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, with no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP.


2015 ◽  
Author(s):  
Willias Masocha

Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP) in animal models. We examined gene expression of glial fibrillary acidic protein (GFAP; an astrocyte marker), glutamate transporters and receptor subunits in the anterior cingulate cortex (ACC) by real time PCR at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. Changes in the ACC, an area in the brain involved in pain perception and modulation, might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR 8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP.


2020 ◽  
Vol 1 ◽  
Author(s):  
Eric M. Chin ◽  
Colleen Lenz ◽  
Xiaobu Ye ◽  
Claudia M. Campbell ◽  
Elaine Stashinko ◽  
...  

Chronic pain is prevalent in adults with cerebral palsy. We aimed to explore associations between chronic pain and somatosensory, motor, cognitive, etiologic, and environmental factors in adults with cerebral palsy. This cross-sectional study enrolled 17 adult participants with cerebral palsy (mean age 31 years; 8 female; Gross Motor Functional Classification Status levels I-V) able to self-report and 10 neurotypical adult volunteers (mean age 34 years; 9 female). Participants reported pain characteristics, demographics, and affective factors. Physical examination included somatosensory and motor evaluation. Between-group comparisons used a ranksum test, and correlation analyses estimated effect size in terms of shared variance (ρ2). Individuals with cerebral palsy reported greater pain intensity, neuropathic qualities, and nociceptive qualities than control participants. Higher pain intensity was associated with female gender (ρ2 = 16%), anxiety/depression symptoms (ρ2 = 10%), and lower household income (ρ2 = 19%). It was also associated with better communicative ability (ρ2 = 21%), spinothalamic (sharp/temperature) sensory abnormalities (ρ2 = 33%), and a greater degree of prematurity (ρ2 = 17%). This study highlights similarity of chronic pain associations in people with cerebral palsy with patterns seen in other populations with chronic pain. Spinothalamic sensory abnormalities suggest central pain mechanisms.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Baojian Zhang ◽  
Yanbing Yu ◽  
Gele Aori ◽  
Qi Wang ◽  
Dawei Kong ◽  
...  

Diabetic peripheral neuropathic pain (DPNP) is a common and intractable complication of diabetes. Conventional therapies are always not ideal; development of novel drugs is still needed to achieve better pain relief. Recent evidences have demonstrated that inflammation is involved in the onset and maintenance of DPNP. The anti-inflammatory property of Tanshinone IIA (TIIA) makes it a promising candidate to block or alter the pain perception. This study was conducted to investigate whether TIIA could attenuate DPNP in streptozotocin- (STZ-) induced rats model and its potential mechanisms. TIIA was administered to STZ-induced diabetic rats at the dose of 40 mg/kg once a day for 3 weeks. The effects of TIIA on thermal hyperalgesia and mechanical allodynia were investigated using behavioral tests. The mRNA level and expression of interleukin- (IL-) 1β, interleukin- (IL-) 6, tumor necrosis factor- (TNF-)α, and interleukin- (IL-) 10 in the fourth to sixth segments of the dorsal root ganglion (L4–6 DRG) were detected by quantitative real-time PCR (qPCR) and Western blot. TIIA treatment significantly attenuated mechanical allodynia and thermal hyperalgesia in diabetic rats. In addition, the expression of the proinflammatory cytokines IL-1β, IL-6, and TNF-αwas inhibited, and the level of the anti-inflammatory cytokine IL-10 was increased by TIIA. This study demonstrated that TIIA has significant antiallodynic and antihyperalgesic effects in a rat model of STZ-induced DPNP, and the effect may be associated with its anti-inflammation property.


2015 ◽  
Author(s):  
Willias Masocha

Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker) immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC) at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
David H. Tian ◽  
Chamini J. Perera ◽  
Gila Moalem-Taylor

Neuropathic pain is a frequent chronic presentation in autoimmune diseases of the nervous system, such as multiple sclerosis (MS) and Guillain-Barre syndrome (GBS), causing significant individual disablement and suffering. Animal models of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN) mimic many aspects of MS and GBS, respectively, and are well suited to study the pathophysiology of these autoimmune diseases. However, while much attention has been devoted to curative options, research into neuropathic pain mechanisms and relief has been somewhat lacking. Recent studies have demonstrated a variety of sensory abnormalities in different EAE and EAN models, which enable investigations of behavioural changes, underlying mechanisms, and potential pharmacotherapies for neuropathic pain associated with these diseases. This review examines the symptoms, mechanisms, and clinical therapeutic options in these conditions and highlights the value of EAE and EAN animal models for the study of neuropathic pain in MS and GBS.


2015 ◽  
Author(s):  
Willias Masocha

Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker) immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC) at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP.


Author(s):  
Yedy Purwandi Sukmawan ◽  
Kusnandar Anggadiredja ◽  
I Ketut Adnyana

Background: Neuropathic pain is one of the contributors to the global burdens of illness. At present many patients do not achieve satisfactory pain relief even with synthetic pain-killers. Taking this into consideration, it is necessary to search for natural product-derived alternative treatment with confirmed safety and efficacy. Ageratum conyzoides L is a plant often used as analgesic in Indonesia, however, anti-neuropathic pain activity of this plant is still unknown. Objective: To determine the anti-neuropathic pain activity of the essential oil and non-essential oil component (distillation residue) of A. conyzoides L. Methods: We conducted separation of the essential oil component from other secondary metabolites through steam distillation. Both components were tested for anti-neuropathic pain activity using chronic constriction injury animal models with thermal hyperalgesia and allodynia tests. The animals were divided into 7 test groups namely normal, sham, negative, positive (pregabalin at 0.195 mg/20 g BW of mice), essential oil component (100 mg/kg BW), and non-essential oil component (100 mg/kg BW). Naloxone was tested against the most potent anti-neuropathic pain component (essential oil or nonessential oil) to investigate the involvement of opioid receptor. Results: The GC-MS of the essential oil component indicated the presence of 60 compounds. Meanwhile, non-essential oil components contained alkaloid, flavonoid, polyphenol, quinone, steroid, and triterpenoid. This non-essential oil component contained a total flavonoid equivalent to 248.89 ppm quercetin. The anti-neuropathic pain activity test showed significantly higher activity of the essential oil component compared to the non-essential oil component and negative groups (p<0.05). Furthermore, the essential oil component showed equal activity to pregabalin (p>0.05). However, this activity was abolished by naloxone, indicating the involvement of opioid receptor in the action of the essential oil component. Conclusion: The essential oil component of A. conyzoides L is a potential novel substance for use as anti-neuropathic pain.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Prasad Neerati ◽  
Harika Prathapagiri

Abstract Background Chronic neuropathic pain syndrome is associated with impaired quality of life and is poorly manageable. Alpha lipoic acid (ALA) is a powerful antioxidant and showed its effectiveness on diabetic neuropathy and other acute peripheral nerve injuries but it was not evaluated in the chronic neuropathic pain, chronic constriction injury (CCI) in rat model by using duloxetine (DLX) as standard. Methodology The main objective of the study was to expedite ALA effect on chronic peripheral neuropathy induced by CCI of sciatic nerve in rats. In this study, male Wister rats were randomly divided into six groups (n = 8) including, normal saline, sham operated, surgery control, DLX 30mg/kg treated, ALA treated 25mg/kg, and ALA+DLX. The CCI of sciatic nerve was conducted on all animals except normal saline group and studied for 21 days (i.e. 14 days treatment period & 7 days treatment free period) by using different behavioral, biochemical and, histopathology studies. Results ALA showed minor but significant decrease of thermal hyperalgesia, cold allodynia, malondialdehyde (MDA), total protein, lipid peroxidation, and nitric oxide levels and significant increase of motor coordination, glutathione level and decreased axonal degeneration significantly. These effects sustained even during treatment free period. ALA enhanced the effect of DLX when given in combination by showing sustained effect. In conclusion, ALA acted as potent antioxidant may be this activity is responsible for the potent neuroprotective effect. Conclusion Hence, ALA attenuated the nueroinflammation mediated by chronic peripheral neuropathy. Further studies are warranted with ALA to develop as a clinically relevant therapeutic agent for the treatment of neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document