Brain Processing of a Visual Self-Motion Study in Patients With Migraine: An fMRI Study

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012443
Author(s):  
Gabriela Carvalho ◽  
Jan Mehnert ◽  
Hauke Basedau ◽  
Kerstin Luedtke ◽  
Arne May

Objective:To investigate the behavioral and neuronal responses of patients with migraine to a visual stimulation of self-motion through a virtual roller coaster ride, in comparison to controls.Methods:Twenty consecutive migraine patients from a university-based hospital headache clinic and 20 controls were included. Participants underwent an experiment where a visually displayed self-motion paradigm was presented based on customized roller coaster videos during fMRI. Within each video, blocks of motion stimulation were interleaved with low speed upward motion in a random order. In the scanning intervals and after the experiment, participants rated their perceived level of vestibular symptoms and motion sickness during the videos. We hypothesized that migraine patients will perceive more motion sickness and that this correlates with a different central processing and brain responses.Results:Compared to controls, migraine patients reported more dizziness (65% versus 30% p= 0.03) and motion sickness [SSQ score 47.3 (95%CI 37.1, 57.5) versus 24.3 (95%CI 18.2, 30.4)] as well as longer symptom duration [01:19 min (95%CI 00:51, 01:48) versus 00:27 min (95%CI 00:03, 00:51)] and intensity [VAS 0-100, 22.0 (95%CI 14.8, 29.2) versus 9.9 (95%CI 4.9, 14.7)] during the virtual roller coaster ride. Neuronal activity in migraine patients were more pronounced in clusters within the superior [Contrast estimate 3.005 (90%CI 1.817, 4.194)] and inferior occipital gyrus [Contrast estimate 1.759 (90%CI 1.062, 2.456)], pontine nuclei [Contrast estimate 0.665 (90%CI 0.383, 0.946)] and within the cerebellar lobules V/VI [Contrast estimate 0.672 (90%CI 0.380, 0.964)], while decreased activity was seen in the cerebellar lobule VIIb [Contrast estimate 0.787 (90%CI 0.444, 1.130)] and in the middle frontal gyrus [Contrast estimate 0.962 (90%CI 0.557, 1.367)]. These activations correlated with migraine disability (r= -0.46, p= 0.04) and motion sickness scores (r= 0.32, p= 0.04). We further found enhanced connectivity between the pontine nuclei, cerebellar areas V/VI, interior and superior occipital gyrus with numerous cortical areas in migraine patients but not in controls.Conclusions:Migraine is related to abnormal modulation of visual motion stimuli within superior and inferior occipital gyrus, middle frontal gyrus, pontine nuclei, cerebellar lobules V, VI and VIIb. These abnormalities relate to migraine disability and motion sickness susceptibility.

2020 ◽  
Vol 123 (4) ◽  
pp. 1369-1379
Author(s):  
Raul Rodriguez ◽  
Benjamin T. Crane

Movement direction can be determined from a combination of visual and inertial cues. Visual motion (optic flow) can represent self-motion through a fixed environment or environmental motion relative to an observer. Simultaneous visual and inertial heading cues present the question of whether the cues have a common cause (i.e., should be integrated) or whether they should be considered independent. This was studied in eight healthy human subjects who experienced 12 visual and inertial headings in the horizontal plane divided in 30° increments. The headings were estimated in two unisensory and six multisensory trial blocks. Each unisensory block included 72 stimulus presentations, while each multisensory block included 144 stimulus presentations, including every possible combination of visual and inertial headings in random order. After each multisensory stimulus, subjects reported their perception of visual and inertial headings as congruous (i.e., having common causation) or not. In the multisensory trial blocks, subjects also reported visual or inertial heading direction (3 trial blocks for each). For aligned visual-inertial headings, the rate of common causation was higher during alignment in cardinal than noncardinal directions. When visual and inertial stimuli were separated by 30°, the rate of reported common causation remained >50%, but it decreased to 15% or less for separation of ≥90°. The inertial heading was biased toward the visual heading by 11–20° for separations of 30–120°. Thus there was sensory integration even in conditions without reported common causation. The visual heading was minimally influenced by inertial direction. When trials with common causation perception were compared with those without, inertial heading perception had a stronger bias toward visual stimulus direction. NEW & NOTEWORTHY Optic flow ambiguously represents self-motion or environmental motion. When these are in different directions, it is uncertain whether these are integrated into a common perception or not. This study looks at that issue by determining whether the two modalities are consistent and by measuring their perceived directions to get a degree of influence. The visual stimulus can have significant influence on the inertial stimulus even when they are perceived as inconsistent.


2004 ◽  
Vol 14 (5) ◽  
pp. 375-385 ◽  
Author(s):  
E.L. Groen ◽  
W. Bles

We examined to what extent body tilt may augment the perception of visually simulated linear self acceleration. Fourteen subjects judged visual motion profiles of fore-aft motion at four different frequencies between 0.04âĂŞ0.33 Hz, and at three different acceleration amplitudes (0.44, 0.88 and 1.76 m / s 2 ). Simultaneously, subjects were tilted backward and forward about their pitch axis. The amplitude of pitch tilt was systematically varied. Using a two-alternative-forced-choice paradigm, psychometric curves were calculated in order to determine: 1) the minimum tilt amplitude required to generate a linear self-motion percept in more than 50% of the cases, and 2) the maximum tilt amplitude at which rotation remains sub-threshold in more than 50% of the cases. The results showed that the simulation of linear self motion became more realistic with the application of whole body tilt, as long as the tilt rate remained under the detection threshold of about 3 deg/s. This value is in close agreement with the empirical rate limit commonly used in flight simulation. The minimum required motion cue was inversely proportional to stimulus frequency, and increased with the amplitude of the visual displacement (rather than acceleration). As a consequence, the range of useful tilt stimuli became more critical with increasing stimulus frequency. We conclude that this psychophysical approach reveals valid parameters for motion driving algorithms used in motion base simulators.


2020 ◽  
Author(s):  
Maria-Bianca Leonte ◽  
Aljoscha Leonhardt ◽  
Alexander Borst ◽  
Alex S. Mauss

AbstractVisual motion detection is among the best understood neuronal computations. One assumed behavioural role is to detect self-motion and to counteract involuntary course deviations, extensively investigated in tethered walking or flying flies. In free flight, however, any deviation from a straight course is signalled by both the visual system as well as by proprioceptive mechanoreceptors called ‘halteres’, which are the equivalent of the vestibular system in vertebrates. Therefore, it is yet unclear to what extent motion vision contributes to course control, or whether straight flight is completely controlled by proprioceptive feedback from the halteres. To answer these questions, we genetically rendered flies motion-blind by blocking their primary motion-sensitive neurons and quantified their free-flight performance. We found that such flies have difficulties maintaining a straight flight trajectory, much like control flies in the dark. By unilateral wing clipping, we generated an asymmetry in propulsory force and tested the ability of flies to compensate for this perturbation. While wild-type flies showed a remarkable level of compensation, motion-blind animals exhibited pronounced circling behaviour. Our results therefore unequivocally demonstrate that motion vision is necessary to fly straight under realistic conditions.


i-Perception ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 204166952110557
Author(s):  
Diederick C. Niehorster

The concept of optic flow, a global pattern of visual motion that is both caused by and signals self-motion, is canonically ascribed to James Gibson's 1950 book “ The Perception of the Visual World.” There have, however, been several other developments of this concept, chiefly by Gwilym Grindley and Edward Calvert. Based on rarely referenced scientific literature and archival research, this article describes the development of the concept of optic flow by the aforementioned authors and several others. The article furthermore presents the available evidence for interactions between these authors, focusing on whether parts of Gibson's proposal were derived from the work of Grindley or Calvert. While Grindley's work may have made Gibson aware of the geometrical facts of optic flow, Gibson's work is not derivative of Grindley's. It is furthermore shown that Gibson only learned of Calvert's work in 1956, almost a decade after Gibson first published his proposal. In conclusion, the development of the concept of optic flow presents an intriguing example of convergent thought in the progress of science.


2021 ◽  
Vol 118 (32) ◽  
pp. e2106235118
Author(s):  
Reuben Rideaux ◽  
Katherine R. Storrs ◽  
Guido Maiello ◽  
Andrew E. Welchman

Sitting in a static railway carriage can produce illusory self-motion if the train on an adjoining track moves off. While our visual system registers motion, vestibular signals indicate that we are stationary. The brain is faced with a difficult challenge: is there a single cause of sensations (I am moving) or two causes (I am static, another train is moving)? If a single cause, integrating signals produces a more precise estimate of self-motion, but if not, one cue should be ignored. In many cases, this process of causal inference works without error, but how does the brain achieve it? Electrophysiological recordings show that the macaque medial superior temporal area contains many neurons that encode combinations of vestibular and visual motion cues. Some respond best to vestibular and visual motion in the same direction (“congruent” neurons), while others prefer opposing directions (“opposite” neurons). Congruent neurons could underlie cue integration, but the function of opposite neurons remains a puzzle. Here, we seek to explain this computational arrangement by training a neural network model to solve causal inference for motion estimation. Like biological systems, the model develops congruent and opposite units and recapitulates known behavioral and neurophysiological observations. We show that all units (both congruent and opposite) contribute to motion estimation. Importantly, however, it is the balance between their activity that distinguishes whether visual and vestibular cues should be integrated or separated. This explains the computational purpose of puzzling neural representations and shows how a relatively simple feedforward network can solve causal inference.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261266
Author(s):  
Maëlle Tixier ◽  
Stéphane Rousset ◽  
Pierre-Alain Barraud ◽  
Corinne Cian

A large body of research has shown that visually induced self-motion (vection) and cognitive processing may interfere with each other. The aim of this study was to assess the interactive effects of a visual motion inducing vection (uniform motion in roll) versus a visual motion without vection (non-uniform motion) and long-term memory processing using the characteristics of standing posture (quiet stance). As the level of interference may be related to the nature of the cognitive tasks used, we examined the effect of visual motion on a memory task which requires a spatial process (episodic recollection) versus a memory task which does not require this process (semantic comparisons). Results confirm data of the literature showing that compensatory postural response in the same direction as background motion. Repeatedly watching visual uniform motion or increasing the cognitive load with a memory task did not decrease postural deviations. Finally, participants were differentially controlling their balance according to the memory task but this difference was significant only in the vection condition and in the plane of background motion. Increased sway regularity (decreased entropy) combined with decreased postural stability (increase variance) during vection for the episodic task would indicate an ineffective postural control. The different interference of episodic and semantic memory on posture during visual motion is consistent with the involvement of spatial processes during episodic memory recollection. It can be suggested that spatial disorientation due to visual roll motion preferentially interferes with spatial cognitive tasks, as spatial tasks can draw on resources expended to control posture.


2017 ◽  
Vol 30 (1) ◽  
pp. 65-90 ◽  
Author(s):  
Séamas Weech ◽  
Nikolaus F. Troje

Studies of the illusory sense of self-motion elicited by a moving visual surround (‘vection’) have revealed key insights about how sensory information is integrated. Vection usually occurs after a delay of several seconds following visual motion onset, whereas self-motion in the natural environment is perceived immediately. It has been suggested that this latency relates to the sensory mismatch between visual and vestibular signals at motion onset. Here, we tested three techniques with the potential to reduce sensory mismatch in order to shorten vection onset latency: noisy galvanic vestibular stimulation (GVS) and bone conducted vibration (BCV) at the mastoid processes, and body vibration applied to the lower back. In Experiment 1, we examined vection latency for wide field visual rotations about the roll axis and applied a burst of stimulation at the start of visual motion. Both GVS and BCV reduced vection latency by two seconds compared to the control condition, whereas body vibration had no effect on latency. In Experiment 2, the visual stimulus rotated about the pitch, roll, or yaw axis and we found a similar facilitation of vection by both BCV and GVS in each case. In a control experiment, we confirmed that air-conducted sound administered through headphones was not sufficient to reduce vection onset latency. Together the results suggest that noisy vestibular stimulation facilitates vection, likely due to an upweighting of visual information caused by a reduction in vestibular sensory reliability.


2005 ◽  
Vol 15 (4) ◽  
pp. 185-195 ◽  
Author(s):  
W.G. Wright ◽  
P. DiZio ◽  
J.R. Lackner

We evaluated visual and vestibular contributions to vertical self motion perception by exposing subjects to various combinations of 0.2 Hz vertical linear oscillation and visual scene motion. The visual stimuli presented via a head-mounted display consisted of video recordings of the test chamber from the perspective of the subject seated in the oscillator. In the dark, subjects accurately reported the amplitude of vertical linear oscillation with only a slight tendency to underestimate it. In the absence of inertial motion, even low amplitude oscillatory visual motion induced the perception of vertical self-oscillation. When visual and vestibular stimulation were combined, self-motion perception persisted in the presence of large visual-vestibular discordances. A dynamic visual input with magnitude discrepancies tended to dominate the resulting apparent self-motion, but vestibular effects were also evident. With visual and vestibular stimulation either spatially or temporally out-of-phase with one another, the input that dominated depended on their amplitudes. High amplitude visual scene motion was almost completely dominant for the levels tested. These findings are inconsistent with self-motion perception being determined by simple weighted summation of visual and vestibular inputs and constitute evidence against sensory conflict models. They indicate that when the presented visual scene is an accurate representation of the physical test environment, it dominates over vestibular inputs in determining apparent spatial position relative to external space.


Author(s):  
Asie N. Useinova ◽  
Vitalii Kaliberdenko ◽  
Igor D. Sapegin ◽  
Shanmugaraj Kulanthaivel ◽  
Michael V. Shterenshis ◽  
...  

Background: Motion sickness occurs worldwide in healthy individuals regardless of age, ethnicity, or gender. It is an acute disorder, it can also present as a chronic disorder in some individuals. Motion sickness not only includes vomiting and nausea, besides this, it includes other features such as pallor of varying degrees, cold sweating, headache, drowsiness, increased salivation, and cranial pain which is severe. Some of the other assessment scales can interpret sickness on exposure to virtual or visual stimulation and while travelling in different types of transport. Aim: The aim our research is to study the effect of the drug on the level of blood flow and vascular reactivity of cerebral vessels when simulating changes in cerebral circulation in terrestrial conditions characteristic of hypogravity. Methods: Chronic experiments were performed on non-anesthetized rabbits with large hemispheres, thalamus and hypothalamus were implanted with the needle-platinum electrodes 150 mm in diameter in the cortex, and local blood flow and vascular reactivity were recorded accordingly. Cerebrovascular disturbances were modeled using a MSAOP (motion sickness of animals in the anti-orthostatic position) with an inclined angle of 45 ° for 2 hours. Local blood flow (BF) was measured in ml/min/100 g of tissue by the method of registration of hydrogen clearance. The vasodilator coefficient of reactivity (CrCO2) was calculated by the ratio of BF against the background of inhalation of a mixture of 7% CO2 with air to the initial BF; vasoconstrictor - in relation to BF on the background of inhalation of 100% O2 to the initial BF (CrO2). A series of experiments was carried out with different routes of drug administration: First, inosine was administered intravenously at a dose of 5 mg/kg immediately before the start of SMS modeling, Same dose per oral was administered 30 minutes before the start of exposure. As a control, we used the results of experimental animals under similar conditions without the administration of the drugs. Results: Inosine has pronounced protective properties in cerebrovascular disorders on the background of space motion sickness (SMS) modeling, which is manifested by normalization of BF and restoration of compensatory reactions of cerebral vessels. In the mechanism of cerebroprotective action of inosine, it is able to correct the metabolic processes which plays an important role and helps to increase the compensatory capabilities and functional stability of the cerebrovascular system under gravitational influences. Conclusion: When using inosine per orally, the effects are more pronounced than when administered intravenously, which should be taken into account when using it for the prevention of cerebrovascular disorders in extreme conditions.


Sign in / Sign up

Export Citation Format

Share Document