Effect of corticosteroids on sciatic nerve-tibialis anterior muscle of rats treated with hemicholinium-3: An experimental approach to a possible mechanism of action of corticosteroids in myasthenia gravis

Neurology ◽  
1977 ◽  
Vol 27 (2) ◽  
pp. 171-171 ◽  
Author(s):  
R. S. LEEUWIN ◽  
E. Ch. M. J. WOLTERS
2017 ◽  
Vol 35 (4) ◽  
pp. 268-275 ◽  
Author(s):  
Jianqi Yu ◽  
Meng Wang ◽  
Junying Liu ◽  
Xiaoming Zhang ◽  
Shengbo Yang

Objective To investigate the effects of electroacupuncture (EA) on mRNA and protein expression of agrin, acetylcholine receptor (AChR)-ε and AChR-γ in a rat model of tibialis anterior muscle atrophy induced by sciatic nerve injection injury, and to examine the underlying mechanism of action. Methods Fifty-four adult Sprague-Dawley rats were divided into four groups: healthy control group (CON, n=6); sciatic nerve injury group (SNI, n=24), comprising rats euthanased at 1, 2, 4 and 6 weeks, respectively, after penicillin injection-induced SNI (n=6 each); CON+EA group (n=12), comprising healthy rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA at GB30 and ST36); and SNI+EA group, comprising rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA). The sciatic nerve functional index (SFI), tibialis anterior muscle weight, muscle fibre cross-sectional area (CSA), and changes in agrin, AChR-ε, and AChR-γ expression levels were analysed. Results Compared with the control group (CON), SNI rats showed decreased SFI. The weight of the tibialis anterior muscle and muscle fibre CSA decreased initially and recovered slightly over time. mRNA/protein expression of agrin and AChR-ε were downregulated and AChR-γ expression was detectable (vs zero expression in the CON/CON+EA groups). There were no significant differences in CON+EA versus CON groups. However, the SNI+EA group exhibited significant improvements compared with the untreated SNI group (p<0.05). Conclusions EA may alleviate tibialis anterior muscle atrophy induced by sciatic nerve injection injury by upregulating agrin and AChR-ε and downregulating AChR-γ.


2015 ◽  
Vol 52 (5) ◽  
pp. 869-875 ◽  
Author(s):  
Kenia Lemos Muniz ◽  
Fernando José Dias ◽  
Joaquim Coutinho-Netto ◽  
Ricardo Alexandre Junqueira Calzzani ◽  
Mamie Mizusaki Iyomasa ◽  
...  

1993 ◽  
Vol 264 (2) ◽  
pp. E161-E166 ◽  
Author(s):  
N. E. Cameron ◽  
M. A. Cotter ◽  
S. Robertson ◽  
E. K. Maxfield

The effects of unilateral electrical stimulation of the peroneal sciatic nerve branch were studied in streptozocin-diabetic rats of 12-wk duration. Stimulation was carried out over 7 days (10 Hz, 8 h/day) with chronically implanted electrodes. Compared with controls, there was a 25% conduction velocity (CV) deficit for the peroneal nerve supplying tibialis anterior muscle in the unstimulated leg, which was corrected by stimulation. For tibial fibers supplying soleus muscle, a similar diabetic CV deficit (20%) was normalized by stimulation, although soleus axons were not directly activated. In saphenous nerve, which has a functionally separate vascular supply, peroneal stimulation was ineffective. In anesthetized diabetic rats, stimulation caused an 18% reduction in tibialis anterior CV after 4 h. However, serial measurements showed progressive normalization of CV over 4 days of stimulation. On termination, CV returned to diabetic levels over 36–60 h. Sciatic nerve showed a 70% increase in resistance to hypoxic conduction failure with diabetes, which was halved by chronic stimulation. Acute experiments demonstrated that peroneal stimulation increased sciatic vascular conductance by 60%. We conclude that stimulation causes activity-related improvements in diabetic nerve blood flow and metabolism.


1992 ◽  
Vol 72 (6) ◽  
pp. 2069-2074 ◽  
Author(s):  
P. Virtanen ◽  
U. Tolonen ◽  
J. Savolainen ◽  
T. E. Takala

The effect of reinnervation on the activities of prolyl 4-hydroxylase (PH) and galactosylhydroxylysyl glucosyltransferase (GGT), both enzymes of collagen biosynthesis, and on the concentration of hydroxyproline (Hyp) was studied in gastrocnemius, soleus, and tibialis anterior muscles of rat 19, 26, 40, and 61 days after crush denervation of the sciatic nerve. The GGT activity was elevated in denervated gastrocnemius and soleus muscles and the PH activity in gastrocnemius. Muscular Hyp concentration was increased in denervated tibialis anterior muscle. Both the PH and GGT activities and the Hyp concentration returned to the control level during the reinnervation period (19–61 days from the start of denervation). It seems that denervation atrophy of skeletal muscle is associated with an increased rate of muscular collagen biosynthesis and that during reinnervation collagen synthesis rate decreases despite accelerated muscular growth. The results thus suggest that innervation is a powerful suppressive regulator of muscular collagen biosynthesis.


1982 ◽  
Vol 10 (3) ◽  
pp. 252-257
Author(s):  
Julia M. Potter ◽  
R. O. Edeson ◽  
A. M. Forbes

Low dose infusion of tubocurarine (20 μg/kg per min) causes an increase in muscle contraction in tibialis anterior of the cat. Tibialis anterior muscle of 13 adult cats was indirectly stimulated via the sciatic nerve using a square wave pulse of 0.2 ms duration and supramaximal voltage at 0.06 Hz. The increase is from 5-133% of control with a mean of 36%. This is sustained for a mean of 97 min, if the infusion is ceased when maximum potentiation is achieved. Duration of potentiation is decreased by increasing the frequency of stimulation. The potentiation occurs in the presence of either rising or falling concentrations of tubocurarine, and continuing the infusion results in neuromuscular blockade. One explanation of these observations is that low dose tubocurarine may interfere with presynaptic negative feedback control of acetylcholine release.


2002 ◽  
Vol 87 (4) ◽  
pp. 1763-1771 ◽  
Author(s):  
Antoni Valero-Cabré ◽  
Xavier Navarro

We investigated the changes induced in crossed extensor reflex responses after peripheral nerve injury and repair in the rat. Adults rats were submitted to non repaired sciatic nerve crush (CRH, n = 9), section repaired by either aligned epineurial suture (CS, n = 11) or silicone tube (SIL4, n = 13), and 8 mm resection repaired by tubulization (SIL8, n = 12). To assess reinnervation, the sciatic nerve was stimulated proximal to the injury site, and the evoked compound muscle action potential (M and H waves) from tibialis anterior and plantar muscles and nerve action potential (CNAP) from the tibial nerve and the 4th digital nerve were recorded at monthly intervals for 3 mo postoperation. Nociceptive reinnervation to the hindpaw was also assessed by plantar algesimetry. Crossed extensor reflexes were evoked by stimulation of the tibial nerve at the ankle and recorded from the contralateral tibialis anterior muscle. Reinnervation of the hindpaw increased progressively with time during the 3 mo after lesion. The degree of muscle and sensory target reinnervation was dependent on the severity of the injury and the nerve gap created. The crossed extensor reflex consisted of three bursts of activity (C1, C2, and C3) of gradually longer latency, lower amplitude, and higher threshold in control rats. During follow-up after sciatic nerve injury, all animals in the operated groups showed recovery of components C1 and C2 and of the reflex H wave, whereas component C3 was detected in a significantly lower proportion of animals in groups with tube repair. The maximal amplitude of components C1 and C2 recovered to values higher than preoperative values, reaching final levels between 150 and 245% at the end of the follow-up in groups CRH, CS, and SIL4. When reflex amplitude was normalized by the CNAP amplitude of the regenerated tibial nerve, components C1 (300–400%) and C2 (150–350%) showed highly increased responses, while C3 was similar to baseline levels. In conclusion, reflexes mediated by myelinated sensory afferents showed, after nerve injuries, a higher degree of facilitation than those mediated by unmyelinated fibers. These changes tended to decline toward baseline values with progressive reinnervation but still remained significant 3 mo after injury.


1996 ◽  
Vol 126 (1) ◽  
pp. 266-272 ◽  
Author(s):  
Daniel Taillandier ◽  
Charles-Yannick Guezennec ◽  
Philippe Patureau-Mirand ◽  
Xavier Bigard ◽  
Maurice Arnal ◽  
...  

2015 ◽  
Vol 118 (5) ◽  
pp. 613-623 ◽  
Author(s):  
Irina V. Ogneva ◽  
V. Gnyubkin ◽  
N. Laroche ◽  
M. V. Maximova ◽  
I. M. Larina ◽  
...  

Altered external mechanical loading during spaceflights causes negative effects on muscular and cardiovascular systems. The aim of the study was estimation of the cortical cytoskeleton statement of the skeletal muscle cells and cardiomyocytes. The state of the cortical cytoskeleton in C57BL6J mice soleus, tibialis anterior muscle fibers, and left ventricle cardiomyocytes was investigated after 30-day 2- g centrifugation (“2- g” group) and within 12 h after its completion (“2- g + 12-h” group). We used atomic force microscopy for estimating cell's transverse stiffness, Western blotting for measuring protein content, and RT-PCR for estimating their expression level. The transverse stiffness significantly decreased in cardiomyocytes (by 16%) and increased in skeletal muscles fibers (by 35% for soleus and by 29% for tibialis anterior muscle fibers) in animals of the 2-g group (compared with the control group). For cardiomyocytes, we found that, in the 2- g + 12-h group, α-actinin-1 content decreased in the membranous fraction (by 27%) and increased in cytoplasmic fraction (by 28%) of proteins (compared with the levels in the 2- g group). But for skeletal muscle fibers, similar changes were noted for α-actinin-4, but not for α-actinin-1. In conclusion, we showed that the different isoforms of α-actinins dissociate from cortical cytoskeleton under increased/decreased of mechanical load.


Sign in / Sign up

Export Citation Format

Share Document