Helicobacter pylori induced degradation of the cell adhesion complex

2007 ◽  
Vol 2007 (Fall) ◽  
Author(s):  
Christiane Weydig ◽  
Silja Wessler
Peptides ◽  
2004 ◽  
Vol 25 (5) ◽  
pp. 873-883 ◽  
Author(s):  
Dirk Meyer zum Büschenfelde ◽  
Heinz Hoschützky ◽  
Rudolf Tauber ◽  
Otmar Huber

1998 ◽  
Vol 111 (8) ◽  
pp. 1071-1080 ◽  
Author(s):  
S.M. Reuver ◽  
C.C. Garner

Members of the SAP family of synapse-associated proteins have recently emerged as central players in the molecular organization of synapses. In this study, we have examined the mechanism that localizes one member, SAP97, to sites of cell-cell contact. Utilizing epithelial CACO-2 cells and fibroblast L-cells as model systems, we demonstrate that SAP97 is associated with the submembranous cortical cytoskeleton at cell-cell adhesion sites. Furthermore, we show that its localization into this structure is triggered by E-cadherin. Although SAP97 can be found in an E-cadherin/catenin adhesion complex, this interaction seems to be mediated by the attachment of SAP97 to the cortical cytoskeleton. Our results are consistent with a model in which SAP97 is recruited to sites of cell-cell contact via an E-cadherin induced assembly of the cortical cytoskeleton.


2002 ◽  
Vol 157 (7) ◽  
pp. 1247-1256 ◽  
Author(s):  
Leora Gollan ◽  
Helena Sabanay ◽  
Sebastian Poliak ◽  
Erik O. Berglund ◽  
Barbara Ranscht ◽  
...  

An axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr–contactin complex at the junction depended on the presence of an intact cytoplasmic domain of Caspr. Using immunoelectron microscopy, we found that a Caspr mutant lacking its intracellular domain was often found within the axon instead of the junctional axolemma. We further show that a short sequence in the cytoplasmic domain of Caspr mediated its binding to the cytoskeleton-associated protein 4.1B. Clustering of contactin on the cell surface induced coclustering of Caspr and immobilized protein 4.1B at the plasma membrane. Furthermore, deletion of the protein 4.1B binding site accelerated the internalization of a Caspr–contactin chimera from the cell surface. These results suggest that Caspr serves as a “transmembrane scaffold” that stabilizes the Caspr/contactin adhesion complex at the paranodal junction by connecting it to cytoskeletal components within the axon.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Marcelo Andery Naves ◽  
Josne Carla Paterno ◽  
Elisabeth B Oliveira-Sales ◽  
Valéria F Caparbo ◽  
Rosa R Pereira ◽  
...  

1997 ◽  
Vol 25 ◽  
pp. S215-S221 ◽  
Author(s):  
Kazuhide Higuchi ◽  
Tetsuo Arakawa ◽  
Toshiyuki Uchida ◽  
Koichiro Nakagawa ◽  
Shiro Nakamura ◽  
...  

2008 ◽  
Vol 416 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Nicolas Menzel ◽  
Juliane Melzer ◽  
Jens Waschke ◽  
Christof Lenz ◽  
Heike Wecklein ◽  
...  

Phosphorylation by tyrosine and serine/threonine kinases regulate the interactions between components of the cadherin–catenin cell-adhesion complex and thus can influence the dynamic modulation of cell adhesion under normal and disease conditions. Previous mutational analysis and localization experiments suggested an involvement of single members of the family of PAKs (p21-activated kinases) in the regulation of cadherin-mediated cell adhesion, but the molecular mechanism remained elusive. In the present study, we address this question using the Drosophila PAK protein Mbt, which is most similar to vertebrate PAK4. Previous phenotypic analysis showed that Mbt has a function to maintain adherens junctions during eye development and indicated a requirement of the protein in regulation of the actin cytoskeleton and the cadherin–catenin complex. Here we show that activation of Mbt leads to destabilization of the interaction of the Drosophila β-catenin homologue Armadillo with DE-cadherin resulting in a decrease in DE-cadherin-mediated adhesion. Two conserved phosphorylation sites in Armadillo were identified that mediate this effect. The findings of the present study support the previous observation that activation of the human Mbt homologue PAK4 leads to anchorage-independent growth and provide a functional link between a PAK protein and the cadherin–catenin complex.


Sign in / Sign up

Export Citation Format

Share Document