Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning

Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 4119-4129 ◽  
Author(s):  
J. Zhang ◽  
M.L. King

An RNA localized to the vegetal cortex of Xenopus oocytes encodes a novel T-box protein (VegT) capable of inducing either dorsal or posterior ventral mesoderm at different times in development. VegT is a nuclear protein and its C-terminal domain can activate transcription in a yeast reporter assay, observations consistent with VegT functioning as a transcription factor. Zygotic expression is dynamic along the dorsoventral axis, with transcripts first expressed in the dorsal marginal zone. By the end of gastrulation, VegT is expressed exclusively in posterior ventral and lateral mesoderm and is excluded from the notochord. Later expression is confined to a subset of Rohon-Beard cells, a type of primary sensory neuron. In animal cap assays, VegT is capable of converting prospective ectoderm into ventral lateral mesoderm. Such ectopic expression of VegT induces its own expression as well as that of Xwnt-8 in caps, suggesting that a Wnt pathway may be involved. Mis-expression of VegT in dorsal animal blastomeres fated to contribute to brain suppresses head formation. Our results suggest that VegT is a localized transcription factor, which operates sequentially in several developmental pathways during embryogenesis, including dorsoventral and posterior patterning of mesoderm.

2001 ◽  
Vol 21 (5) ◽  
pp. 1866-1873 ◽  
Author(s):  
Lauren Snider ◽  
Hilary Thirlwell ◽  
Jeffrey R. Miller ◽  
Randall T. Moon ◽  
Mark Groudine ◽  
...  

ABSTRACT We have determined that I-mfa, an inhibitor of several basic helix-loop-helix (bHLH) proteins, and XIC, a Xenopusortholog of human I-mf domain-containing protein that shares a highly conserved cysteine-rich C-terminal domain with I-mfa, inhibit the activity and DNA binding of the HMG box transcription factor XTcf3. Ectopic expression of I-mfa or XIC in early Xenopus embryos inhibited dorsal axis specification, the expression of the Tcf3/β-catenin-regulated genessiamois and Xnr3, and the ability of β-catenin to activate reporter constructs driven by Lef/Tcf binding sites. I-mfa domain proteins can regulate both the Wnt signaling pathway and a subset of bHLH proteins, possibly coordinating the activities of these two critical developmental pathways.


Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2371-2380 ◽  
Author(s):  
P. Lemaire ◽  
S. Darras ◽  
D. Caillol ◽  
L. Kodjabachian

We have studied the role of the activin immediate-early response gene Mix.1 in mesoderm and endoderm formation. In early gastrulae, Mix.1 is expressed throughout the vegetal hemisphere, including marginal-zone cells expressing the trunk mesodermal marker Xbra. During gastrulation, the expression domains of Xbra and Mix.1 become progressively exclusive as a result of the establishment of a negative regulatory loop between these two genes. This mutual repression is important for the specification of the embryonic body plan as ectopic expression of Mix.1 in the Xbra domain suppresses mesoderm differentiation. The same effect was obtained by overexpressing VP16Mix.1, a fusion protein comprising the strong activator domain of viral VP16 and the homeodomain of Mix.1, suggesting that Mix.1 acts as a transcriptional activator. Mix.1 also has a role in endoderm formation. It cooperates with the dorsal vegetal homeobox gene Siamois to activate the endodermal markers edd, Xlhbox8 and cerberus in animal caps. Conversely, vegetal overexpression of enRMix.1, an antimorphic Mix.1 mutant, leads to a loss of endoderm differentiation. Finally, by targeting enRMix.1 expression to the anterior endoderm, we could test the role of this tissue during embryogenesis and show that it is required for head formation.


2012 ◽  
Vol 144 (1-2) ◽  
pp. 7-15 ◽  
Author(s):  
Koji Eshima ◽  
Sayuri Chiba ◽  
Harumi Suzuki ◽  
Kenichi Kokubo ◽  
Hirosuke Kobayashi ◽  
...  

Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 4001-4012 ◽  
Author(s):  
K.D. Lustig ◽  
K.L. Kroll ◽  
E.E. Sun ◽  
M.W. Kirschner

We have used a functional assay to identify a putative T-box transcription factor (Xombi) that has the ability to induce sites of invagination in the ectoderm of Xenopus embryos that resemble the blastopore lip. Maternal Xombi transcript is first localized to the oocyte's vegetal cortex and cytoplasm, early sources of mesoderm and endoderm-inducing signals. Soon after zygotic transcription begins, there is a wave of Xombi expression, beginning in dorsal mesoderm and then extending to lateral and ventral mesoderm, that precedes and parallels blastopore lip formation at the border between the mesoderm and endoderm. Transcripts encoding brachyury, Xwnt8 and goosecoid colocalize with Xombi transcripts within the marginal zone; ectopic expression of Xombi induces expression of all three mesodermal genes. In ectodermal explants, Xombi expression is induced by the secreted mesoderm inducers activinA, activinB, Xnrl and eFGF, and by brachyury, another Xenopus T-box containing gene. The time course and location of Xombi expression, its biological activities and the partial dependence of Xombi expression and blastopore lip formation on fibroblast growth factor (FGF) signaling suggest that Xombi contributes to a traveling wave of morphogenesis and differentiation during Xenopus gastrulation.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208343 ◽  
Author(s):  
Lucy Cooper ◽  
Lauren Hailes ◽  
Amania Sheikh ◽  
Colby Zaph ◽  
Gabrielle T. Belz ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41355 ◽  
Author(s):  
Bin Wang ◽  
Linsey E. Lindley ◽  
Virneliz Fernandez-Vega ◽  
Megan E. Rieger ◽  
Andrew H. Sims ◽  
...  

2015 ◽  
Vol 10 (4) ◽  
pp. 2021-2026 ◽  
Author(s):  
YAN ZHENG ◽  
YUAN-FANG LI ◽  
WEI WANG ◽  
YONG-MING CHEN ◽  
DAN-DAN WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document