How is embryo size genetically regulated in rice?

Development ◽  
1996 ◽  
Vol 122 (7) ◽  
pp. 2051-2058 ◽  
Author(s):  
S.K. Hong ◽  
H. Kitano ◽  
H. Satoh ◽  
Y. Nagato

It is unclear how embryo size is genetically regulated in plants. Since cereals have a large persisting endosperm, it is expected that embryo size is affected by endosperm development. Nine single recessive mutations, four reduced embryo mutations representing three loci, REDUCED EMBRYO1, REDUCED EMBRYO2 and REDUCED EMBRYO3, four giant embryo mutations derived from a single locus GIANT EMBRYO, and one endospermless mutation endospermless1-2 were analyzed. Every reduced embryo mutation caused reduction of all the embryonic organs including apical meristems and the enlargement of the endosperm. The giant embryo mutants have a reduced endosperm and an enlarged scutellum. However, shoot and radicle sizes were not affected. All the reduced embryo and giant embryo mutations did not largely affect postembryonic development. Accordingly, the expression of genes analyzed are seed-specific. In reduced embryo and giant embryo mutations, abnormalities were detected in both embryo and endosperm as early as 2 days after pollination. endospermless1-1 resulted in an early loss of endosperm, yielding a giant embryo, suggesting that embryo growth was physically limited by the endosperm. A double mutant between giant embryo-2 and club-shaped embryo1-1, which has a normal endosperm and a minute undifferentiated embryo, resulted in a club-shaped embryo1-1 embryo and a reduced endosperm of giant embryo-2, indicating that GIANT EMBRYO regulates the endosperm development. Double mutants between giant embryo-2 and three reduced embryo mutants exhibited the reduced embryo phenotype in both embryo and endosperm, suggesting that reduced embryo mutations cause the enlarged endosperm. Further, a double mutant of reduced embryo3 and endospermless1-1 showed the enlarged embryo in endospermless seed. This confirms that reduced embryo3 does not regulate embryo size but enlarges endosperm size. Together with the results of the other double mutant analysis, REDUCED EMBRYO1, REDUCED EMBRYO2, REDUCED EMBRYO3 and GIANT EMBRYO are concluded to regulate endosperm development.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 449-458 ◽  
Author(s):  
Patrick C Phillips ◽  
Norman A Johnson

Abstract Synthetic lethals are variants at different loci that have little or no effect on viability singly but cause lethality in combination. The importance of synthetic lethals and, more generally, of synthetic deleterious loci (SDL) has been controversial. Here, we derive the expected frequencies for SDL under a mutation-selection balance for the complete haploid model and selected cases of the diploid model. We have also obtained simple approximations that demonstrate good fit to exact solutions based on numerical iterations. In the haploid case, equilibrium frequencies of carrier haplotypes (individuals with only a single mutation) are comparable to analogous single-locus results, after allowing for the effects of linkage. Frequencies in the diploid case, however, are much higher and more comparable to the square root of the single-locus results. In particular, when selection operates only on the double-mutant homozygote and linkage is not too tight, the expected frequency of the carriers is approximately the quartic root of the ratio between the mutation rate and the selection coefficient of the synthetics. For a reasonably wide set of models, the frequencies of carriers can be on the order of a few percent. The equilibrium frequencies of these deleterious alleles can be relatively high because, with SDL, both dominance and epistasis act to shield carriers from exposure to selection. We also discuss the possible role of SDL in maintaining genetic variation and in hybrid breakdown.



Development ◽  
2002 ◽  
Vol 129 (5) ◽  
pp. 1165-1174 ◽  
Author(s):  
Guoyan Zhao ◽  
James B. Skeath

In the Drosophila embryonic central nervous system, neural stem cells, called neuroblasts, acquire fates in a position-specific manner. Recent work has identified a set of genes that functions along the dorsoventral axis to enable neuroblasts that develop in different dorsoventral domains to acquire distinct fates. These genes include the evolutionarily conserved transcription factors ventral nerve cord defective and intermediate neuroblasts defective, as well as the Drosophila EGF receptor. We show that the Sox-domain-containing gene Dichaete/fish-hook also plays a crucial role to pattern the neuroectoderm along the DV axis. Dichaete is expressed in the medial and intermediate columns of the neuroectoderm, and mutant analysis indicates that Dichaete regulates cell fate and neuroblast formation in these domains. Molecular epistasis tests, double mutant analysis and dosage-sensitive interactions demonstrate that during these processes, Dichaete functions in parallel with ventral nerve cord defective and intermediate neuroblasts defective, and downstream of EGF receptor signaling to mediate its effect on development. These results identify Dichaete as an important regulator of dorsoventral pattern in the neuroectoderm, and indicate that Dichaete acts in concert with ventral nerve cord defective and intermediate neuroblasts defective to regulate pattern and cell fate in the neuroectoderm.



1994 ◽  
Vol 14 (8) ◽  
pp. 5223-5228
Author(s):  
C Dollard ◽  
S L Ricupero-Hovasse ◽  
G Natsoulis ◽  
J D Boeke ◽  
F Winston

The Saccharomyces cerevisiae genome contains four loci that encode histone proteins. Two of these loci, HTA1-HTB1 and HTA2-HTB2, each encode histones H2A and H2B. The other two loci, HHT1-HHF1 and HHT2-HHF2, each encode histones H3 and H4. Because of their redundancy, deletion of any one histone locus does not cause lethality. Previous experiments demonstrated that mutations at one histone locus, HTA1-HTB1, do cause lethality when in conjunction with mutations in the SPT10 gene. SPT10 has been shown to be required for normal levels of transcription of several genes in S. cerevisiae. Motivated by this double-mutant lethality, we have now investigated the interactions of mutations in SPT10 and in a functionally related gene, SPT21, with mutations at each of the four histone loci. These experiments have demonstrated that both SPT10 and SPT21 are required for transcription at two particular histone loci, HTA2-HTB2 and HHF2-HHT2, but not at the other two histone loci. These results suggest that under some conditions, S. cerevisiae may control the level of histone proteins by differential expression of its histone genes.



Genetics ◽  
1991 ◽  
Vol 127 (4) ◽  
pp. 781-788
Author(s):  
A Ruvinsky ◽  
A Agulnik ◽  
S Agulnik ◽  
M Rogachova

Abstract Analysis of the functional nature of mutations can be based on comparisons of their manifestation in organisms with a deletion or duplication of a particular chromosome segment. With the use of reciprocal translocation T(16;17)43H, it is feasible to produce mice with tertiary trisomy of the proximal region of chromosome 17. The mutations on chromosome 17 we tested included brachyury (T), hairpin tail (Thp), kinky (Fuki), quaking (qk), tufted (tf), as well as tct (t complex tail interaction), and tcl (t complex lethal) that are specific to t haplotypes. The set of dominant and recessive mutations was assigned to two groups: one obligatory, manifesting itself in the phenotype independently of the number of normal alleles in di- and trisomics, and the other facultative, phenotypically manifesting itself depending upon the dosage of mutant alleles. A model was derived from analysis of the interaction of the T and Thp mutations with t haplotypes. It seeks to explain the morphogenetic effects of the mutations observed in mice of different genotypes. The tir gene is postulated to reside on chromosome 17 within its framework. It is suggested that the gene dosage ratio at the tir and tct loci determines tail length.



2020 ◽  
Author(s):  
Sharma Nidhi ◽  
Liu Tie

AbstractIn Arabidopsis, the genes SHOOT MERISTEMLESS (STM) and CLAVATA3 (CLV3) antagonistically regulate shoot meristem development. STM is essential for both development and maintenance of the meristem, as stm mutants fail to develop a shoot meristem during embryogenesis. CLV3, on the other hand, negatively regulates meristem proliferation, and clv3 mutants possess an enlarged shoot meristem. Genetic interaction studies revealed that stm and clv3 dominantly suppress each other’s phenotypes. STM works in conjunction with its closely related homologue KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6) to promote meristem development and organ separation, as stm knat6 double mutants fail to form a meristem and produce a fused cotyledon. In this study, we show that clv3 fails to promote post-embryonic meristem formation in stm-1 background if we also remove KNAT6. stm-1 knat6 clv3 triple mutants result in early meristem termination and produce fused cotyledons similar to stm knat6 double mutant. Notably, the stm-1 knat6 and stm-1 knat6 clv3 alleles lack tissue in the presumed region of SAM. stm knat6 clv3 also showed reduced inflorescence size and shoot apex size as compared to clv3 single or stm clv3 double mutants. In contrast to previously published data, these data suggest that stm is epistatic to clv3 in postembryonic meristem development.HighlightSTM and KNAT6 genes determine post-embryonic meristem formation and activity in Arabidopsis. clv3 mutation is unable to rescue the stm knat6 meristemless phenotype.



1985 ◽  
Vol 63 (9) ◽  
pp. 1582-1585 ◽  
Author(s):  
Leslie G. Hickok

Abscisic acid normally inhibits growth and male sexual differentiation (antheridia formation) in gametophytes of the fern Ceratopteris. Abscisic acid resistant mutants show increased growth and sexual differentiation in comparison with the wild type when cultured in the presence of abscisic acid. Two different mutants that confer resistance to the effects of abscisic acid have been fully characterized. One shows moderate resistance and the other strong resistance. The mutations involve separate but linked loci. Recombination between the loci yields double mutant (cis) recombinants that exhibit additive effects and show exceptional levels of abscisic acid resistance.



1988 ◽  
Vol 8 (12) ◽  
pp. 5132-5139
Author(s):  
D Thomas ◽  
R Rothstein ◽  
N Rosenberg ◽  
Y Surdin-Kerjan

In Saccharomyces cerevisiae the SAM1 and SAM2 genes encode two distinct forms of S-adenosylmethionine (AdoMet) synthetase. In a previous study we cloned and sequenced the SAM1 gene (D. Thomas and Y. Surdin-Kerjan, J. Biol. Chem. 262:16704-16709, 1987). In this work, the SAM2 gene was isolated by functional complementation of a yeast double-mutant strain, and its identity was ascertained by gene disruption. It has been sequenced and compared with the SAM1 gene. The degree of homology found between the two genes shows that SAM1 and SAM2 are duplicated genes. Using strains disrupted in one or the other SAM gene, we have studied the regulation of their expression by measuring the steady-state level of mRNA after growth under different conditions. The results show that the expression of the two SAM genes is regulated differently, SAM2 being induced by the presence of excess methionine in the growth medium and SAM1 being repressed under the same conditions. The level of mRNA in the parental strain shows that it is not the sum of the levels found in the two disrupted strains. This raises the question of how the two AdoMet synthetases in S. cerevisiae interact to control AdoMet synthesis.



2020 ◽  
Vol 31 (19) ◽  
pp. 2107-2114 ◽  
Author(s):  
Paola Zambon ◽  
Saravanan Palani ◽  
Shekhar Sanjay Jadhav ◽  
Pananghat Gayathri ◽  
Mohan K. Balasubramanian

This work reveals an in vivo role for Myosin II in actin dynamics, potentially in its disassembly and turnover. The work uses double mutant analysis to arrive at this conclusion using the fission yeast as a model organism.



2020 ◽  
Vol 21 (4) ◽  
pp. 1196 ◽  
Author(s):  
Serazhutdin Abdullaev ◽  
Nina Gubina ◽  
Tatiana Bulanova ◽  
Azhub Gaziev

Studies of molecular changes occurred in various brain regions after whole-body irradiation showed a significant increase in terms of the importance in gaining insight into how to slow down or prevent the development of long-term side effects such as carcinogenesis, cognitive impairment and other pathologies. We have analyzed nDNA damage and repair, changes in mitochondrial DNA (mtDNA) copy number and in the level of mtDNA heteroplasmy, and also examined changes in the expression of genes involved in the regulation of mitochondrial biogenesis and dynamics in three areas of the rat brain (hippocampus, cortex and cerebellum) after whole-body X-ray irradiation. Long amplicon quantitative polymerase chain reaction (LA-QPCR) was used to detect nDNA and mtDNA damage. The level of mtDNA heteroplasmy was estimated using Surveyor nuclease technology. The mtDNA copy numbers and expression levels of a number of genes were determined by real-time PCR. The results showed that the repair of nDNA damage in the rat brain regions occurs slowly within 24 h; in the hippocampus, this process runs much slower. The number of mtDNA copies in three regions of the rat brain increases with a simultaneous increase in mtDNA heteroplasmy. However, in the hippocampus, the copy number of mutant mtDNAs increases significantly by the time point of 24 h after radiation exposure. Our analysis shows that in the brain regions of irradiated rats, there is a decrease in the expression of genes (ND2, CytB, ATP5O) involved in ATP synthesis, although by the same time point after irradiation, an increase in transcripts of genes regulating mitochondrial biogenesis is observed. On the other hand, analysis of genes that control the dynamics of mitochondria (Mfn1, Fis1) revealed that sharp decrease in gene expression level occurred, only in the hippocampus. Consequently, the structural and functional characteristics of the hippocampus of rats exposed to whole-body radiation can be different, most significantly from those of the other brain regions.



1996 ◽  
Vol 67 (3) ◽  
pp. 257-269 ◽  
Author(s):  
Yannis Michalakis ◽  
Montgomery Slatkin

SummaryWe investigated the interaction of recombination and selection on the process of fixation of two linked loci with epistatic interactions in fitness. We consider both the probability of fixation of newly arising mutants (the static model) and the time to fixation under continued mutation (the dynamic model). Our results show that the fixation of a new advantageous combination is facilitated by higher fitness of the advantageous genotype and by weaker selection against the intermediate deleterious genotypes. Fixation occurs more rapidly when the recombination rates are small, except when selection against intermediate genotypes is weak and selection in favour of the double mutant is very strong. In these cases fixation is more rapid when the recombinant rate is large. Mutations of strong effects, deleterious when alone but beneficial when coupled, are fixed more easily than mutations of intermediate effects, at least for large recombination rates. Among the possible pathways the process of fixation might follow, independent substitutions lead to the fixation of the double mutant only when selection is weak. The relative importance of the other pathways depends on the interaction between recombination and selection. The coupled-gamete pathway (i.e. when the population waits until the double mutant appears and then drives it to fixation) is more important as selection intensity increases and the recombination rate is reduced. For all recombination rates, asymmetries in fitness of the intermediate genotypes increase the rate at which fixations occur. Finally, throughout the fixation process, the population will be monomorphic at least at one of the two loci for most of the time, which implies that there would be little opportunity to detect the presence of negative epistasis even if it were important for occasional evolutionary transitions.



Sign in / Sign up

Export Citation Format

Share Document