Development of the Drosophila olfactory sense organs utilizes cell-cell interactions as well as lineage

Development ◽  
1997 ◽  
Vol 124 (3) ◽  
pp. 703-712 ◽  
Author(s):  
G.V. Reddy ◽  
B. Gupta ◽  
K. Ray ◽  
V. Rodrigues

We have examined the mechanisms underlying the development of the olfactory sense organs on the third segment of the antenna of Drosophila. Our studies suggest that a novel developmental strategy is employed. Specification of the founder or precursor cell is not governed by the genes of the achaete-scute complex. Another basic helix-loop-helix encoding gene, atonal, is essential for determination of only a subset of the sensilla types--the sensilla coeloconica. Therefore, we predict the existence of additional proneural genes for the selection of sensilla trichoidea and sensilla basiconica. The choice of a founder cell from the presumed proneural domain is regulated by Notch activity. Soon after delamination of the founder cell, two to three additional neighboring cells also take on a sensory fate and these cells together form a presensillum cluster. The selection of neighbors does not occur when endocytosis is blocked using a temperature sensitive allele of shibire, thus suggesting that cell-cell communication is required for this step. The cells of the cluster divide once before terminal differentiation which is influenced by Notch activity. The final cell number within each sensillum is controlled by programmed cell death.


Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 561-577 ◽  
Author(s):  
Steven I Reed

ABSTRACT Thirty-three temperature-sensitive mutations defective in the start event of the cell division cycle of Saccharomyces cereuisiae were isolated and subjected to preliminary characterization. Complementation studies assigned these mutations to four complementation groups, one of which, cdc28, has been described previously. Genetic analysis revealed that these complementation groups define single nuclear genes, unlinked to one another. One of the three newly identified genes, cdc37, has been located in the yeast linkage map on chromosome IV, two meiotic map units distal to hom2.—Each mutation produces stage-specific arrest of cell division at start, the same point where mating pheromone interrupts division. After synchronization at start by incubation at the restrictive temperature, the mutants retain the capacity to enlarge and to conjugate.



Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Orit Malka ◽  
Dorin Kalson ◽  
Karin Yaniv ◽  
Reut Shafir ◽  
Manikandan Rajendran ◽  
...  

Abstract Background Probiotic milk-fermented microorganism mixtures (e.g., yogurt, kefir) are perceived as contributing to human health, and possibly capable of protecting against bacterial infections. Co-existence of probiotic microorganisms are likely maintained via complex biomolecular mechanisms, secreted metabolites mediating cell-cell communication, and other yet-unknown biochemical pathways. In particular, deciphering molecular mechanisms by which probiotic microorganisms inhibit proliferation of pathogenic bacteria would be highly important for understanding both the potential benefits of probiotic foods as well as maintenance of healthy gut microbiome. Results The microbiome of a unique milk-fermented microorganism mixture was determined, revealing a predominance of the fungus Kluyveromyces marxianus. We further identified a new fungus-secreted metabolite—tryptophol acetate—which inhibits bacterial communication and virulence. We discovered that tryptophol acetate blocks quorum sensing (QS) of several Gram-negative bacteria, particularly Vibrio cholerae, a prominent gut pathogen. Notably, this is the first report of tryptophol acetate production by a yeast and role of the molecule as a signaling agent. Furthermore, mechanisms underscoring the anti-QS and anti-virulence activities of tryptophol acetate were elucidated, specifically down- or upregulation of distinct genes associated with V. cholerae QS and virulence pathways. Conclusions This study illuminates a yet-unrecognized mechanism for cross-kingdom inhibition of pathogenic bacteria cell-cell communication in a probiotic microorganism mixture. A newly identified fungus-secreted molecule—tryptophol acetate—was shown to disrupt quorum sensing pathways of the human gut pathogen V. cholerae. Cross-kingdom interference in quorum sensing may play important roles in enabling microorganism co-existence in multi-population environments, such as probiotic foods and the gut microbiome. This discovery may account for anti-virulence properties of the human microbiome and could aid elucidating health benefits of probiotic products against bacterially associated diseases.



Sign in / Sign up

Export Citation Format

Share Document