MyoD and the specification of muscle and non-muscle fates during postembryonic development of the C. elegans mesoderm

Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2479-2488 ◽  
Author(s):  
B.D. Harfe ◽  
C.S. Branda ◽  
M. Krause ◽  
M.J. Stern ◽  
A. Fire

Basic-helix-loop helix factors of the myoD/myf5/ myogenin/MRF4 family have been implicated in acquisition and elaboration of muscle cell fates. Here we describe both myogenic and non-myogenic roles for the Caenorhabditis elegans member of this family (CeMyoD) in postembryonic mesodermal patterning. The postembryonic mesodermal lineage in C. elegans provides a paradigm for many of the issues in mesodermal fate specification: a single mesoblast ('M') divides to generate 14 striated muscles, 16 non-striated muscles, and two non-muscle cells. To study CeMyoD function in the M lineage, we needed to circumvent an embryonic requirement for the protein. Two approaches were used: (1) isolation of mutants that decrease CeMyoD levels while retaining viability, and (2) analysis of genetic mosaics that had lost CeMyoD in the M lineage. With either manipulation, we observed a series of cell-fate transformations affecting a subset of both striated muscles and non-muscle cells. In place of these normal fates, the affected lineages produced a number of myoblast-like cells that initially failed to differentiate, instead swelling to acquire a resemblance to sex myoblasts (M-lineage-derived precursors to non-striated uterine and vulval muscles). Like normal sex myoblasts, the ectopic myoblast-like cells were capable of migration and proliferation followed by differentiation of progeny cells into vulval and uterine muscle. Our results demonstrate a cell-intrinsic contribution of CeMyoD to specification of both non-muscle and muscle fates.

Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3617-3626 ◽  
Author(s):  
A.P. Newman ◽  
J.G. White ◽  
P.W. Sternberg

We have undertaken electron micrographic reconstruction of the Caenorhabditis elegans hermaphrodite uterus and determined the correspondence between cells defined by their lineage history and differentiated cell types. In this organ, many cells do not move during morphogenesis and the cell lineage may function to put cells where they are needed. Differentiated uterine cell types include the toroidal ut cells that make structural epithelium, and specialized utse and uv cells that make the connection between the uterus and the vulva. A cell fate decision in which the anchor cell (AC) induces adjacent ventral uterine intermediate precursor cells to adopt the pi fate, rather than the ground state rho, has profound consequences for terminal differentiation: all pi progeny are directly involved in making the uterine-vulval connection whereas all rho progeny contribute to ut toroids or the uterine-spermathecal valve. In addition to specifying certain uterine cell fates, the AC also induces the vulva. Its multiple inductions thereby function to coordinate the connection of an internal to an external epithelium. The AC induces the pi cells and ultimately fuses with a subset of their progeny. This is an example of reciprocal cell-cell interaction that can be studied at single cell resolution. The AC is thus a transitory cell type that plays a pivotal role in organizing the morphogenesis of the uterine-vulval connection.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3615-3626 ◽  
Author(s):  
K.L. Chow ◽  
D.H. Hall ◽  
S.W. Emmons

The gene mab-21, which encodes a novel protein of 386 amino acids, is required for the choice of alternate cell fates by several cells in the C. elegans male tail. Three cells descended from the ray 6 precursor cell adopt fates of anterior homologs, and a fourth, lineally unrelated hypodermal cell is transformed into a neuroblast. The affected cells lie together in the lateral tail epidermis, suggesting that mab-21 acts as part of a short-range pattern-formation mechanism. Each of the changes in cell fate brought about by mab-21 mutants can be interpreted as a posterior-to-anterior homeotic transformation. mab-21 mutant males and hermaphrodites have additional pleiotropic phenotypes affecting movement, body shape and fecundity, indicating that mab-21 has functions outside the tail region of males. We show that the three known alleles of mab-21 are hypomorphs of a new gene. Mosaic analysis revealed that mab-21 acts cell autonomously to specify the properties of the sensory ray, but non-autonomously in the hypodermal versus neuroblast cell fate choice. Presence of cell signalling in the choice of the neuroblast fate was confirmed by cell ablation experiments. Mutations in mab-21 were shown previously to be genetic modifiers of the effects of HOM-C/Hox gene mutations on ray identity specification. The results presented here support the conclusion that mab-21 acts as part of a mechanism required for correct cell fate choice, possibly involving the function of HOM-C/Hox genes in several body regions.


2018 ◽  
Author(s):  
Sungwook Choi ◽  
Victor Ambros

AbstractC. elegans heterochronic genes determine the timing of expression of specific cell fates in particular stages of developing larva. However, their broader roles in coordinating developmental events across diverse tissues has been less well investigated. Here, we show that loss of lin-28, a central heterochronic regulator of hypodermal development, causes reduced fertility associated with abnormal somatic gonad morphology. In particular, the abnormal spermatheca-uterine valve morphology of lin-28(lf) hermaphrodites trap embryos in the spermatheca, which disrupts ovulation and causes embryonic lethality. The same genes that act downstream of lin-28 in the regulation of hypodermal developmental timing also act downstream of lin-28 in somatic gonad morphogenesis and fertility. Importantly, we find that hypodermal expression, but not somatic gonadal expression, of lin-28 is sufficient for restoring normal somatic gonad morphology in lin-28(lf) mutants. We propose that the abnormal somatic gonad morphogenesis of lin-28(lf) hermaphrodites results from temporal discoordination between the accelerated hypodermal development and normally timed somatic gonad development. Thus, our findings exemplify how a cell-intrinsic developmental timing program can also control cell non-autonomous signaling critical for proper development of other interacting tissues.


2019 ◽  
Author(s):  
Kiara C. Eldred ◽  
Cameron Avelis ◽  
Robert J. Johnston ◽  
Elijah Roberts

AbstractNervous systems are incredibly diverse, with myriad neuronal subtypes defined by gene expression. How binary and graded fate characteristics are patterned across tissues is poorly understood. Expression of opsin photopigments in the cone photoreceptors of the mouse retina provides an excellent model to address this question. Individual cones express S-opsin only, M-opsin, or both S-opsin and M-opsin. These cell populations are patterned along the dorsal-ventral axis, with greater M-opsin expression in the dorsal region and greater S-opsin expression in the ventral region. Thyroid hormone signaling plays a critical role in activating M-opsin and repressing S-opsin. Here, we developed an image analysis approach to identify individual cone cells and evaluate their opsin expression from immunofluorescence imaging tiles spanning roughly 6 mm along the D-V axis of the mouse retina. From analyzing the opsin expression of ∼250,000 cells, we found that cones make a binary decision between S-opsin only and co-expression competent fates. Co-expression competent cells express graded levels of S- and M-opsins, depending nonlinearly on their position in the dorsal-ventral axis. M- and S-opsin expression display differential, inverse patterns. Using these single-cell data we developed a quantitative, stochastic model of cone cell decisions in the retinal tissue based on thyroid hormone signaling activity. The model recovers the probability distribution for cone fate patterning in the mouse retina and describes a minimal set of interactions that are necessary to reproduce the observed cell fates. Our study provides a paradigm describing how differential responses to regulatory inputs generate complex patterns of binary and graded cell fates.Author SummaryThe development of a cell in a mammalian tissue is governed by a complex regulatory network that responds to many input signals to give the cell a distinct identity, a process referred to as cell-fate specification. Some of these cell fates have binary on-or-off gene expression patterns, while others have graded gene expression that changes across the tissue. Differentiation of the photoreceptor cells that sense light in the mouse retina provides a good example of this process. Here, we explore how complex patterns of cell fates are specified in the mouse retina by building a computational model based on analysis of a large number of photoreceptor cells from microscopy images of whole retinas. We use the data and the model to study what exactly it means for a cell to have a binary or graded cell fate and how these cell fates can be distinguished from each other. Our study shows how tens-of-thousands of individual photoreceptor cells can be patterned across a complex tissue by a regulatory network, creating a different outcome depending upon the received inputs.


Development ◽  
2002 ◽  
Vol 129 (7) ◽  
pp. 1763-1774 ◽  
Author(s):  
Scott Cameron ◽  
Scott G. Clark ◽  
Joan B. McDermott ◽  
Eric Aamodt ◽  
H. Robert Horvitz

During Caenorhabditis elegans development, the patterns of cell divisions, cell fates and programmed cell deaths are reproducible from animal to animal. In a search for mutants with abnormal patterns of programmed cell deaths in the ventral nerve cord, we identified mutations in the gene pag-3, which encodes a zinc-finger transcription factor similar to the mammalian Gfi-1 and Drosophila Senseless proteins. In pag-3 mutants, specific neuroblasts express the pattern of divisions normally associated with their mother cells, producing with each reiteration an abnormal anterior daughter neuroblast and an extra posterior daughter cell that either terminally differentiates or undergoes programmed cell death, which accounts for the extra cell corpses seen in pag-3 mutants. In addition, some neurons do not adopt their normal fates in pag-3 mutants. The phenotype of pag-3 mutants and the expression pattern of the PAG-3 protein suggest that in some lineages pag-3 couples the determination of neuroblast cell fate to subsequent neuronal differentiation. We propose that pag-3 counterparts in other organisms determine blast cell identity and for this reason may lead to cell lineage defects and cell proliferation when mutated.


Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Sara E. Billings ◽  
Nina M. Myers ◽  
Lee Quiruz ◽  
Alan G. Cheng

ABSTRACT During embryonic development, the otic epithelium and surrounding periotic mesenchymal cells originate from distinct lineages and coordinate to form the mammalian cochlea. Epithelial sensory precursors within the cochlear duct first undergo terminal mitosis before differentiating into sensory and non-sensory cells. In parallel, periotic mesenchymal cells differentiate to shape the lateral wall, modiolus and pericochlear spaces. Previously, Wnt activation was shown to promote proliferation and differentiation of both otic epithelial and mesenchymal cells. Here, we fate-mapped Wnt-responsive epithelial and mesenchymal cells in mice and found that Wnt activation resulted in opposing cell fates. In the post-mitotic cochlear epithelium, Wnt activation via β-catenin stabilization induced clusters of proliferative cells that dedifferentiated and lost epithelial characteristics. In contrast, Wnt-activated periotic mesenchyme formed ectopic pericochlear spaces and cell clusters showing a loss of mesenchymal and gain of epithelial features. Finally, clonal analyses via multi-colored fate-mapping showed that Wnt-activated epithelial cells proliferated and formed clonal colonies, whereas Wnt-activated mesenchymal cells assembled as aggregates of mitotically quiescent cells. Together, we show that Wnt activation drives transition between epithelial and mesenchymal states in a cell type-dependent manner.


2021 ◽  
Author(s):  
Josh Saul ◽  
Takashi Hirose ◽  
Robert Horvitz

Cell identity is characterized by a distinct combination of gene expression, cell morphology and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in older worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.


2015 ◽  
Vol 48 (4) ◽  
pp. 389-394 ◽  
Author(s):  
Richard A. Lerner ◽  
Rajesh K. Grover ◽  
Hongkai Zhang ◽  
Jia Xie ◽  
Kyung Ho Han ◽  
...  

AbstractTo date, most antibodies from combinatorial libraries have been selected purely on the basis of binding. However, new methods now allow selection on the basis of function in animal cells. These selected agonist antibodies have given new insights into the important problem of signal transduction. Remarkably, when some antibodies bind to a given receptor they induce a cell fate that is different than that induced by the natural agonist to the same receptor. The fact that receptors can be functionally pleiotropic may yield new insights into the important problem of signal transduction.


Development ◽  
2000 ◽  
Vol 127 (20) ◽  
pp. 4419-4431 ◽  
Author(s):  
L.A. Berkowitz ◽  
S. Strome

During Caenorhabditis elegans embryogenesis the primordial germ cell, P(4), is generated via a series of unequal divisions. These divisions produce germline blastomeres (P(1), P(2), P(3), P(4)) that differ from their somatic sisters in their size, fate and cytoplasmic content (e.g. germ granules). mes-1 mutant embryos display the striking phenotype of transformation of P(4) into a muscle precursor, like its somatic sister. A loss of polarity in P(2) and P(3) cell-specific events underlies the Mes-1 phenotype. In mes-1 embryos, P(2) and P(3) undergo symmetric divisions and partition germ granules to both daughters. This paper shows that mes-1 encodes a receptor tyrosine kinase-like protein, though it lacks several residues conserved in all kinases and therefore is predicted not to have kinase activity. Immunolocalization analysis shows that MES-1 is present in four- to 24-cell embryos, where it is localized in a crescent at the junction between the germline cell and its neighboring gut cell. This is the region of P(2) and P(3) to which the spindle and P granules must move to ensure normal division asymmetry and cytoplasmic partitioning. Indeed, during early stages of mitosis in P(2) and P(3), one centrosome is positioned adjacent to the MES-1 crescent. Staining of isolated blastomeres demonstrated that MES-1 was present in the membrane of the germline blastomeres, consistent with a cell-autonomous function. Analysis of MES-1 distribution in various cell-fate and patterning mutants suggests that its localization is not dependent on the correct fate of either the germline or the gut blastomere but is dependent upon correct spatial organization of the embryo. Our results suggest that MES-1 directly positions the developing mitotic spindle and its associated P granules within P(2) and P(3), or provides an orientation signal for P(2)- and P(3)-specific events.


Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3667-3680 ◽  
Author(s):  
D.M. Eisenmann ◽  
J.N. Maloof ◽  
J.S. Simske ◽  
C. Kenyon ◽  
S.K. Kim

In C. elegans, the epithelial Pn.p cells adopt either a vulval precursor cell fate or fuse with the surrounding hypodermis (the F fate). Our results suggest that a Wnt signal transduced through a pathway involving the beta-catenin homolog BAR-1 controls whether P3.p through P8.p adopt the vulval precursor cell fate. In bar-1 mutants, P3.p through P8.p can adopt F fates instead of vulval precursor cell fates. The Wnt/bar-1 signaling pathway acts by regulating the expression of the Hox gene lin-39, since bar-1 is required for LIN-39 expression and forced lin-39 expression rescues the bar-1 mutant phenotype. LIN-39 activity is also regulated by the anchor cell signal/let-23 receptor tyrosine kinase/let-60 Ras signaling pathway. Our genetic and molecular experiments show that the vulval precursor cells can integrate the input from the BAR-1 and LET-60 Ras signaling pathways by coordinately regulating activity of the common target LIN-39 Hox.


Sign in / Sign up

Export Citation Format

Share Document