scholarly journals Antibodies from combinatorial libraries use functional receptor pleiotropism to regulate cell fates

2015 ◽  
Vol 48 (4) ◽  
pp. 389-394 ◽  
Author(s):  
Richard A. Lerner ◽  
Rajesh K. Grover ◽  
Hongkai Zhang ◽  
Jia Xie ◽  
Kyung Ho Han ◽  
...  

AbstractTo date, most antibodies from combinatorial libraries have been selected purely on the basis of binding. However, new methods now allow selection on the basis of function in animal cells. These selected agonist antibodies have given new insights into the important problem of signal transduction. Remarkably, when some antibodies bind to a given receptor they induce a cell fate that is different than that induced by the natural agonist to the same receptor. The fact that receptors can be functionally pleiotropic may yield new insights into the important problem of signal transduction.

2019 ◽  
Author(s):  
Kiara C. Eldred ◽  
Cameron Avelis ◽  
Robert J. Johnston ◽  
Elijah Roberts

AbstractNervous systems are incredibly diverse, with myriad neuronal subtypes defined by gene expression. How binary and graded fate characteristics are patterned across tissues is poorly understood. Expression of opsin photopigments in the cone photoreceptors of the mouse retina provides an excellent model to address this question. Individual cones express S-opsin only, M-opsin, or both S-opsin and M-opsin. These cell populations are patterned along the dorsal-ventral axis, with greater M-opsin expression in the dorsal region and greater S-opsin expression in the ventral region. Thyroid hormone signaling plays a critical role in activating M-opsin and repressing S-opsin. Here, we developed an image analysis approach to identify individual cone cells and evaluate their opsin expression from immunofluorescence imaging tiles spanning roughly 6 mm along the D-V axis of the mouse retina. From analyzing the opsin expression of ∼250,000 cells, we found that cones make a binary decision between S-opsin only and co-expression competent fates. Co-expression competent cells express graded levels of S- and M-opsins, depending nonlinearly on their position in the dorsal-ventral axis. M- and S-opsin expression display differential, inverse patterns. Using these single-cell data we developed a quantitative, stochastic model of cone cell decisions in the retinal tissue based on thyroid hormone signaling activity. The model recovers the probability distribution for cone fate patterning in the mouse retina and describes a minimal set of interactions that are necessary to reproduce the observed cell fates. Our study provides a paradigm describing how differential responses to regulatory inputs generate complex patterns of binary and graded cell fates.Author SummaryThe development of a cell in a mammalian tissue is governed by a complex regulatory network that responds to many input signals to give the cell a distinct identity, a process referred to as cell-fate specification. Some of these cell fates have binary on-or-off gene expression patterns, while others have graded gene expression that changes across the tissue. Differentiation of the photoreceptor cells that sense light in the mouse retina provides a good example of this process. Here, we explore how complex patterns of cell fates are specified in the mouse retina by building a computational model based on analysis of a large number of photoreceptor cells from microscopy images of whole retinas. We use the data and the model to study what exactly it means for a cell to have a binary or graded cell fate and how these cell fates can be distinguished from each other. Our study shows how tens-of-thousands of individual photoreceptor cells can be patterned across a complex tissue by a regulatory network, creating a different outcome depending upon the received inputs.


Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Sara E. Billings ◽  
Nina M. Myers ◽  
Lee Quiruz ◽  
Alan G. Cheng

ABSTRACT During embryonic development, the otic epithelium and surrounding periotic mesenchymal cells originate from distinct lineages and coordinate to form the mammalian cochlea. Epithelial sensory precursors within the cochlear duct first undergo terminal mitosis before differentiating into sensory and non-sensory cells. In parallel, periotic mesenchymal cells differentiate to shape the lateral wall, modiolus and pericochlear spaces. Previously, Wnt activation was shown to promote proliferation and differentiation of both otic epithelial and mesenchymal cells. Here, we fate-mapped Wnt-responsive epithelial and mesenchymal cells in mice and found that Wnt activation resulted in opposing cell fates. In the post-mitotic cochlear epithelium, Wnt activation via β-catenin stabilization induced clusters of proliferative cells that dedifferentiated and lost epithelial characteristics. In contrast, Wnt-activated periotic mesenchyme formed ectopic pericochlear spaces and cell clusters showing a loss of mesenchymal and gain of epithelial features. Finally, clonal analyses via multi-colored fate-mapping showed that Wnt-activated epithelial cells proliferated and formed clonal colonies, whereas Wnt-activated mesenchymal cells assembled as aggregates of mitotically quiescent cells. Together, we show that Wnt activation drives transition between epithelial and mesenchymal states in a cell type-dependent manner.


Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2479-2488 ◽  
Author(s):  
B.D. Harfe ◽  
C.S. Branda ◽  
M. Krause ◽  
M.J. Stern ◽  
A. Fire

Basic-helix-loop helix factors of the myoD/myf5/ myogenin/MRF4 family have been implicated in acquisition and elaboration of muscle cell fates. Here we describe both myogenic and non-myogenic roles for the Caenorhabditis elegans member of this family (CeMyoD) in postembryonic mesodermal patterning. The postembryonic mesodermal lineage in C. elegans provides a paradigm for many of the issues in mesodermal fate specification: a single mesoblast ('M') divides to generate 14 striated muscles, 16 non-striated muscles, and two non-muscle cells. To study CeMyoD function in the M lineage, we needed to circumvent an embryonic requirement for the protein. Two approaches were used: (1) isolation of mutants that decrease CeMyoD levels while retaining viability, and (2) analysis of genetic mosaics that had lost CeMyoD in the M lineage. With either manipulation, we observed a series of cell-fate transformations affecting a subset of both striated muscles and non-muscle cells. In place of these normal fates, the affected lineages produced a number of myoblast-like cells that initially failed to differentiate, instead swelling to acquire a resemblance to sex myoblasts (M-lineage-derived precursors to non-striated uterine and vulval muscles). Like normal sex myoblasts, the ectopic myoblast-like cells were capable of migration and proliferation followed by differentiation of progeny cells into vulval and uterine muscle. Our results demonstrate a cell-intrinsic contribution of CeMyoD to specification of both non-muscle and muscle fates.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3617-3626 ◽  
Author(s):  
A.P. Newman ◽  
J.G. White ◽  
P.W. Sternberg

We have undertaken electron micrographic reconstruction of the Caenorhabditis elegans hermaphrodite uterus and determined the correspondence between cells defined by their lineage history and differentiated cell types. In this organ, many cells do not move during morphogenesis and the cell lineage may function to put cells where they are needed. Differentiated uterine cell types include the toroidal ut cells that make structural epithelium, and specialized utse and uv cells that make the connection between the uterus and the vulva. A cell fate decision in which the anchor cell (AC) induces adjacent ventral uterine intermediate precursor cells to adopt the pi fate, rather than the ground state rho, has profound consequences for terminal differentiation: all pi progeny are directly involved in making the uterine-vulval connection whereas all rho progeny contribute to ut toroids or the uterine-spermathecal valve. In addition to specifying certain uterine cell fates, the AC also induces the vulva. Its multiple inductions thereby function to coordinate the connection of an internal to an external epithelium. The AC induces the pi cells and ultimately fuses with a subset of their progeny. This is an example of reciprocal cell-cell interaction that can be studied at single cell resolution. The AC is thus a transitory cell type that plays a pivotal role in organizing the morphogenesis of the uterine-vulval connection.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1491-1505
Author(s):  
D F Lyman ◽  
B Yedvobnick

Abstract The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H+ transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H+ transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2407
Author(s):  
Ruicen He ◽  
Arthur Dantas ◽  
Karl Riabowol

Acetylation of histones is a key epigenetic modification involved in transcriptional regulation. The addition of acetyl groups to histone tails generally reduces histone-DNA interactions in the nucleosome leading to increased accessibility for transcription factors and core transcriptional machinery to bind their target sequences. There are approximately 30 histone acetyltransferases and their corresponding complexes, each of which affect the expression of a subset of genes. Because cell identity is determined by gene expression profile, it is unsurprising that the HATs responsible for inducing expression of these genes play a crucial role in determining cell fate. Here, we explore the role of HATs in the maintenance and differentiation of various stem cell types. Several HAT complexes have been characterized to play an important role in activating genes that allow stem cells to self-renew. Knockdown or loss of their activity leads to reduced expression and or differentiation while particular HATs drive differentiation towards specific cell fates. In this study we review functions of the HAT complexes active in pluripotent stem cells, hematopoietic stem cells, muscle satellite cells, mesenchymal stem cells, neural stem cells, and cancer stem cells.


Author(s):  
Lucy LeBlanc ◽  
Nereida Ramirez ◽  
Jonghwan Kim

AbstractHippo effectors YAP and TAZ control cell fate and survival through various mechanisms, including transcriptional regulation of key genes. However, much of this research has been marked by conflicting results, as well as controversy over whether YAP and TAZ are redundant. A substantial portion of the discordance stems from their contradictory roles in stem cell self-renewal vs. differentiation and cancer cell survival vs. apoptosis. In this review, we present an overview of the multiple context-dependent functions of YAP and TAZ in regulating cell fate decisions in stem cells and organoids, as well as their mechanisms of controlling programmed cell death pathways in cancer.


Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 807-822 ◽  
Author(s):  
K.A. Wharton ◽  
R.P. Ray ◽  
W.M. Gelbart

decapentaplegic (dpp) is a zygotically expressed gene encoding a TGF-beta-related ligand that is necessary for dorsal-ventral patterning in the Drosophila embryo. We show here that dpp is an integral part of a gradient that specifies many different cell fates via intercellular signalling. There is a graded requirement for dpp activity in the early embryo: high levels of dpp activity specify the amnioserosa, while progressively lower levels specify dorsal and lateral ectoderm. This potential for dpp to specify cell fate is highly dosage sensitive. In the wild-type embryo, increasing the gene dosage of dpp can shift cell fates along the dorsal-ventral axis. Furthermore, in mutant embryos, in which only a subset of the dorsal-ventral pattern elements are represented, increasing the gene dosage of dpp can specifically transform those pattern elements into more dorsal ones. We present evidence that the zygotic dpp gradient and the maternal dorsal gradient specify distinct, non-overlapping domains of the dorsal-ventral pattern.


Sign in / Sign up

Export Citation Format

Share Document