scholarly journals Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis

Development ◽  
1998 ◽  
Vol 125 (6) ◽  
pp. 983-994 ◽  
Author(s):  
M.L. Concha ◽  
R.J. Adams

We have taken advantage of the optical transparency of zebrafish embryos to investigate the patterns of cell division, movement and shape during early stages of development of the central nervous system. The surface-most epiblast cells of gastrula and neurula stage embryos were imaged and analysed using a computer-based, time-lapse acquisition system attached to a differential interference contrast (DIC) microscope. We find that the onset of gastrulation is accompanied by major changes in cell behaviour. Cells collect into a cohesive sheet, apparently losing independent motility and integrating their behaviour to move coherently over the yolk in a direction that is the result of two influences: towards the vegetal pole in the movements of epiboly and towards the dorsal midline in convergent movements that strengthen throughout gastrulation. Coincidentally, the plane of cell division becomes aligned to the surface plane of the embryo and oriented in the anterior-posterior (AP) direction. These behaviours begin at the blastoderm margin and propagate in a gradient towards the animal pole. Later in gastrulation, cells undergo increasingly mediolateral-directed elongation and autonomous convergence movements towards the dorsal midline leading to an enormous extension of the neural axis. Around the equator and along the dorsal midline of the gastrula, persistent AP orientation of divisions suggests that a common mechanism may be involved but that neither oriented cell movements nor shape can account for this alignment. When the neural plate begins to differentiate, there is a gradual transition in the direction of cell division from AP to the mediolateral circumference (ML). ML divisions occur in both the ventral epidermis and dorsal neural plate. In the neural plate, ML becomes the predominant orientation of division during neural keel and nerve rod stages and, from late neural keel stage, divisions are concentrated at the dorsal midline and generate bilateral progeny (C. Papan and J. A. Campos-Ortega (1994) Roux's Arch. Dev. Biol. 203, 178–186). Coincidentally, cells on the ventral surface also orient their divisions in the ML direction, cleaving perpendicular to the direction in which they are elongated. The ML alignment of epidermal divisions is well correlated with cell shape but ML divisions within the neuroepithelium appear to be better correlated with changes in tissue morphology associated with neurulation.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan M. Werner ◽  
Maraki Y. Negesse ◽  
Dominique L. Brooks ◽  
Allyson R. Caldwell ◽  
Jafira M. Johnson ◽  
...  

AbstractPrimary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2595-2609 ◽  
Author(s):  
K. Woo ◽  
S.E. Fraser

The zebrafish is an excellent vertebrate model for the study of the cellular interactions underlying the patterning and the morphogenesis of the nervous system. Here, we report regional fate maps of the zebrafish anterior nervous system at two key stages of neural development: the beginning (6 hours) and the end (10 hours) of gastrulation. Early in gastrulation, we find that the presumptive neurectoderm displays a predictable organization that reflects the future anteroposterior and dorsoventral order of the central nervous system. The precursors of the major brain subdivisions (forebrain, midbrain, hindbrain, neural retina) occupy discernible, though overlapping, domains within the dorsal blastoderm at 6 hours. As gastrulation proceeds, these domains are rearranged such that the basic order of the neural tube is evident at 10 hours. Furthermore, the anteroposterior and dorsoventral order of the progenitors is refined and becomes aligned with the primary axes of the embryo. Time-lapse video microscopy shows that the rearrangement of blastoderm cells during gastrulation is highly ordered. Cells near the dorsal midline at 6 hours, primarily forebrain progenitors, display anterior-directed migration. Cells more laterally positioned, corresponding to midbrain and hindbrain progenitors, converge at the midline prior to anteriorward migration. These results demonstrate a predictable order in the presumptive neurectoderm, suggesting that patterning interactions may be well underway by early gastrulation. The fate maps provide the basis for further analyses of the specification, induction and patterning of the anterior nervous system, as well as for the interpretation of mutant phenotypes and gene-expression patterns.


1941 ◽  
Vol s2-82 (327) ◽  
pp. 377-440
Author(s):  
H. BARRACLOUGH FELL

1. The first cleavage may be either equal, or markedly unequal; when it is equal the next segmentation affects both blastomeres; when it is unequal the larger blastomere is believed to give rise to three cells, and the smaller remains undivided till the next cleavage. 2. At the eight-cell stage there are two quartets of blastomeres. The upper quartet, micromeres, occupy the animal pole. The lower quartet, macromeres, occupy the vegetal pole. 3. The blastula comprises micromeres and macromeres, and the blastocoel is small and becomes eccentric. No cilia are developed. 4. The gastrula is formed by the shallow imagination of the macromeres, accompanied by an extensive process of epiboly affecting the micromeres. More marked epiboly of cells on two sides of the blastomere produces in the early stages two crests which later disappear. These may indicate a trace of bilateral symmetry. Epiblast comes to lie on solid mes-hypoblast. The archenteron is transient, and gives rise to no structures. The blastopore occupies the position of the definitive mouth. 5. No larva ever forms, nor is there any vestige of a larval stage. 6. The solid gastrula is converted into the adult by assuming a radial symmetry directly, with no intermediate bilaterally symmetrical form, unless the two epibolic crests are regarded as vestiges of larval symmetry. 7. The podia appear as solid outgrowths, in which the hydrocoelic cavity develops by splitting. 8. The definitive enteron appears as a split extending upward from the ventral surface through the solid hypoblast. 9. The young ophiuroid leaves the egg before the appearance of the general body cavity, and moves about, but does not at first take food. 10. The general coelomic body cavity and the perihaemal cavity develop by splitting in a mass of mesenchyme derived from the outer layers of mes-hypoblast. 11. The formation of the skeletal system is delayed till the stage of between two and three arm-segments. 12. The development of the skeleton follows closely that described for Amphiura squamata. 13. The tooth is shown to originate independently of the torus angularis; its rudiments comprise nine symmetrically disposed spicules. 14. The terminal plate arises later than the radials, and has a distinctive ‘primitive structure’. 15. The spine is shown to have a different development to that of the tooth, and therefore would seem to have no connexion with the latter in phylogeny or ontogeny. 16. It is suggested that the aberrant early stages are to be correlated with the retarding effect of the yolk mass present in the egg during ontogeny. The aberrant features may have had a different origin in phylogeny. 17. It is suggested that the simultaneous appearance in ontogeny of homologous organs situated at equal radial distances from the centre is to be explained in terms of hormonic activity. 18. It is concluded that evolution has considerably affected the early ontogeny without leaving its mark on phylogeny. The adult thus conforms to its class, the young form does not.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 339-349 ◽  
Author(s):  
K. Symes ◽  
J.C. Smith

The first inductive interaction in amphibian development is mesoderm induction, in which an equatorial mesodermal rudiment is induced from the animal hemisphere under the influence of a signal from vegetal pole blastomeres. We have recently discovered that the Xenopus XTC cell line secretes a factor which has the properties we would expect of a mesoderm-inducing factor. In this paper, we show that an early response to this factor by isolated Xenopus animal pole regions is a change in shape, involving elongation and constriction. We show by several criteria, including general appearance, timing, rate of elongation and the nonrequirement for cell division that these movements resemble the events of gastrulation. We also demonstrate that the movements provide an early, simple and reliable indicator of mesoderm induction and are of use in providing a ‘model system’ for the study of mesoderm induction and gastrulation. For example, we show that the timing of gastrulation movements does not depend upon the time of receipt of a mesoderm-induction signal, but on an intrinsic gastrulation ‘clock’ which is present even in those animal pole cells that would not nomally require it.


Development ◽  
1971 ◽  
Vol 26 (1) ◽  
pp. 37-49
Author(s):  
Marvin R. Kalt

Blastocoel formation in Xenopus laevis was investigated by light microscopy using serial sections of epoxy-embedded, staged embryos. The earliest manifestation of the blastocoel in the embryo appeared during the first cleavage as a modification in the animal pole furrow tip. This modification consisted of an expansion of a localized area of the furrow. As the blastocoel became a distinct entity, it remained stationary, while the furrow tip continued to advance inwardly. In contrast, no such furrow cavity was observed in the vegetal pole furrow during its formation. During subsequent cleavages, up to the late morula stage, furrows on opposite sides of any given blastomere had different morphologies. As further divisions occurred, the mode of furrow formation became identical regardless of location in the embryo. It is suggested that the cytokinetic pattern in early amphibian embryos is modified to allow for the formation of the blastocoel. After the blastocoel has formed, the cytokinetic pattern changes to one which is concerned solely with cell division.


Author(s):  
P. Evers ◽  
C. Schutte ◽  
C. D. Dettman

S.rodhaini (Brumpt 1931) is a parasite of East African rodents which may possibly hybridize with the human schistosome S. mansoni. The adult male at maturity measures approximately 3mm long and possesses both oral and ventral suckers and a marked gynaecophoric canal. The oral sucker is surrounded by a ring of sensory receptors with a large number of inwardly-pointing spines set into deep sockets occupying the bulk of the ventral surface of the sucker. Numbers of scattered sensory receptors are found on both dorsal and ventral surfaces of the head (Fig. 1) together with two conspicuous rows of receptors situated symmetrically on each side of the midline. One row extends along the dorsal surface of the head midway between the dorsal midline and the lateral margin.


Sign in / Sign up

Export Citation Format

Share Document