Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture

Development ◽  
1999 ◽  
Vol 126 (1) ◽  
pp. 157-168 ◽  
Author(s):  
D. Natarajan ◽  
M. Grigoriou ◽  
C.V. Marcos-Gutierrez ◽  
C. Atkins ◽  
V. Pachnis

The enteric nervous system of vertebrates is derived from neural crest cells that invade the gut wall and generate a highly organised network of enteric ganglia. Among the genes that play an important role in ENS development is c-Ret, mutations of which result in failure of formation of enteric ganglia (intestinal aganglionosis). To further understand the development of the mammalian ENS in general and the mechanism of action of the RET RTK in particular, we have developed and used an organotypic culture system of mouse fetal gut. At the stage of culture initiation, the gut is partially populated by undifferentiated ENS progenitors, but culture for several days results in extensive neuronal and glial differentiation. Using this organ culture system, we have compared the development of the ENS in wild-type and RET-deficient gut and showed that the aganglionic phenotype observed in vivo is consistently reproduced under the in vitro culture conditions. Microinjection of RET+ cells isolated from E11.5 mouse bowel into wild-type or RET-deficient aganglionic gut in organ culture, results in extensive repopulation of their wall by exogenously derived neurons and glia. Finally, using a similar approach, we demonstrate that single RET+ cells introduced into the wall of wild-type gut generate both cell lineages of the ENS, i.e. neurons and glia. Our data show the NC-derived RET+ population of fetal gut in mammalian embryos consists of multipotential progenitors capable of colonising efficiently both wild-type and RET-deficient aganglionic bowel in organ culture.

2010 ◽  
Vol 19 (18) ◽  
pp. 3642-3651 ◽  
Author(s):  
Maria M. Alves ◽  
Grzegorz Burzynski ◽  
Jean-Marie Delalande ◽  
Jan Osinga ◽  
Annemieke van der Goot ◽  
...  

Abstract Goldberg–Shprintzen syndrome (GOSHS) is a rare clinical disorder characterized by central and enteric nervous system defects. This syndrome is caused by inactivating mutations in the Kinesin Binding Protein (KBP) gene, which encodes a protein of which the precise function is largely unclear. We show that KBP expression is up-regulated during neuronal development in mouse cortical neurons. Moreover, KBP-depleted PC12 cells were defective in nerve growth factor-induced differentiation and neurite outgrowth, suggesting that KBP is required for cell differentiation and neurite development. To identify KBP interacting proteins, we performed a yeast two-hybrid screen and found that KBP binds almost exclusively to microtubule associated or related proteins, specifically SCG10 and several kinesins. We confirmed these results by validating KBP interaction with one of these proteins: SCG10, a microtubule destabilizing protein. Zebrafish studies further demonstrated an epistatic interaction between KBP and SCG10 in vivo . To investigate the possibility of direct interaction between KBP and microtubules, we undertook co-localization and in vitro binding assays, but found no evidence of direct binding. Thus, our data indicate that KBP is involved in neuronal differentiation and that the central and enteric nervous system defects seen in GOSHS are likely caused by microtubule-related defects.


Reproduction ◽  
2011 ◽  
Vol 141 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Candace M Tingen ◽  
Sarah E Kiesewetter ◽  
Jennifer Jozefik ◽  
Cristina Thomas ◽  
David Tagler ◽  
...  

Innovations in in vitro ovarian follicle culture have revolutionized the field of fertility preservation, but the successful culturing of isolated primary and small secondary follicles remains difficult. Herein, we describe a revised 3D culture system that uses a feeder layer of ovarian stromal cells to support early follicle development. This culture system allows significantly improved primary and early secondary follicle growth and survival. The stromal cells, consisting mostly of thecal cells and ovarian macrophages, recapitulate the in vivo conditions of these small follicles and increase the production of androgens and cytokines missing from stromal cell-free culture conditions. These results demonstrate that small follicles have a stage-specific reliance on the ovarian environment, and that growth and survival can be improved in vitro through a milieu created by pre-pubertal ovarian stromal cell co-culture.


1986 ◽  
Vol 65 (12) ◽  
pp. 1445-1448 ◽  
Author(s):  
S.S. Harris ◽  
J.M. Navia

We have examined the effect of in vivo vitamin A status on subsequent rat third molar formation and mineralization in an in vitro organ culture system. Vitamin A deficiency imposed during an eight-day in vitro period caused effects very similar to those of vitamin A deficiency imposed on rats in vivo. Analysis of the data also demonstrates that retinoic acid is capable of reversing the interference in mineralization of third molars induced by vitamin A deficiency in the organ culture system.


2000 ◽  
Vol 74 (5) ◽  
pp. 2406-2413 ◽  
Author(s):  
Davorka Messmer ◽  
Ralf Ignatius ◽  
Christine Santisteban ◽  
Ralph M. Steinman ◽  
Melissa Pope

ABSTRACT Transmission of simian immunodeficiency virus SIVmac239Δnef (Δnef) to macaques results in attenuated replication of the virus in most animals and ultimately induces protection against challenge with some pathogenic, wild-type SIV strains. It has been difficult, however, to identify a culture system in which the replication of Δnef is severely reduced relative to that of the wild type. We have utilized a primary culture system consisting of blood-derived dendritic cells (DCs) and autologous T cells. When the DCs were fully differentiated or mature, the DC–CD4+ T-cell mixtures supported replication of both the parental SIV strain, 239 (the wild type), and its mutant withnef deleted (Δnef), irrespective of virus dose and the cell type introducing the virus to the coculture. In contrast, when immature DCs were exposed to Δnef and cocultured with T cells, virus replication was significantly lower than that of the wild type. Activation of the cultures with a superantigen allowed both Δnef and the wild type to replicate comparably in immature DC–T-cell cultures. Immature DCs, which, it has been hypothesized, capture and transmit SIV in vivo, are deficient in supporting replication of Δnef in vitro and may contribute to the reduced pathogenicity of Δnef in vivo.


2003 ◽  
Vol 23 (22) ◽  
pp. 8233-8245 ◽  
Author(s):  
Natalia Ninkina ◽  
Katerina Papachroni ◽  
Darren C. Robertson ◽  
Oliver Schmidt ◽  
Liz Delaney ◽  
...  

ABSTRACT Homologous recombination in ES cells was employed to generate mice with targeted deletion of the first three exons of the γ-synuclein gene. Complete inactivation of gene expression in null mutant mice was confirmed on the mRNA and protein levels. Null mutant mice are viable, are fertile, and do not display evident phenotypical abnormalities. The effects of γ-synuclein deficiency on motor and peripheral sensory neurons were studied by various methods in vivo and in vitro. These two types of neurons were selected because they both express high levels of γ-synuclein from the early stages of mouse embryonic development but later in the development they display different patterns of intracellular compartmentalization of the protein. We found no difference in the number of neurons between wild-type and null mutant animals in several brain stem motor nuclei, in lumbar dorsal root ganglia, and in the trigeminal ganglion. The survival of γ-synuclein-deficient trigeminal neurons in various culture conditions was not different from that of wild-type neurons. There was no difference in the numbers of myelinated and nonmyelinated fibers in the saphenous nerves of these animals, and sensory reflex thresholds were also intact in γ-synuclein null mutant mice. Nerve injury led to similar changes in sensory function in wild-type and mutant mice. Taken together, our data suggest that like α-synuclein, γ-synuclein is dispensable for the development and function of the nervous system.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 569
Author(s):  
Seung-Jun Lee ◽  
Perry Ayn Mayson A Maza ◽  
Gyu-Min Sun ◽  
Petr Slama ◽  
In-Jeong Lee ◽  
...  

In this study, we developed a three-dimensional (3D) in vitro infection model to investigate the crosstalk between phagocytes and microbes in inflammation using a nanofibrous membrane (NM). Poly(ε-caprolactone) (PCL)-NMs (PCL-NMs) were generated via electrospinning of PCL in chloroform. Staphylococcus aureus and phagocytes were able to adhere to the nanofibers and phagocytes engulfed S. aureus in the PCL-NM. The migration of phagocytes to S. aureus was evaluated in a two-layer co-culture system using PCL-NM. Neutrophils, macrophages and dendritic cells (DCs) cultured in the upper PCL-NM layer migrated to the lower PCL-NM layer containing bacteria. DCs migrated to neutrophils that cultured with bacteria and then engulfed neutrophils in two-layer system. In addition, phagocytes in the upper PCL-NM layer migrated to bacteria-infected MLE-12 lung epithelial cells in the lower PCL-NM layer. S. aureus-infected MLE-12 cells stimulated the secretion of tumor necrosis factor-α and IL-1α in 3D culture conditions, but not in 2D culture conditions. Therefore, the PCL-NM-based 3D culture system with phagocytes and bacteria mimics the inflammatory response to microbes in vivo and is applicable to the biomimetic study of various microbe infections.


Development ◽  
1999 ◽  
Vol 126 (12) ◽  
pp. 2785-2797 ◽  
Author(s):  
S. Taraviras ◽  
C.V. Marcos-Gutierrez ◽  
P. Durbec ◽  
H. Jani ◽  
M. Grigoriou ◽  
...  

RET is a member of the receptor tyrosine kinase (RTK) superfamily, which can transduce signalling by glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) in cultured cells. In order to determine whether in addition to being sufficient, RET is also necessary for signalling by these growth factors, we studied the response to GDNF and NTN of primary neuronal cultures (peripheral sensory and central dopaminergic neurons) derived from wild-type and RET-deficient mice. Our experiments show that absence of a functional RET receptor abrogates the biological responses of neuronal cells to both GDNF and NTN. Despite the established role of the RET signal transduction pathway in the development of the mammalian enteric nervous system (ENS), very little is known regarding its cellular mechanism(s) of action. Here, we have studied the effects of GDNF and NTN on cultures of neural crest (NC)-derived cells isolated from the gut of rat embryos. Our findings suggest that GDNF and NTN promote the survival of enteric neurons as well as the survival, proliferation and differentiation of multipotential ENS progenitors present in the gut of E12.5-13.5 rat embryos. However, the effects of these growth factors are stage-specific, since similar ENS cultures established from later stage embryos (E14. 5–15.5), show markedly diminished response to GDNF and NTN. To examine whether the in vitro effects of RET activation reflect the in vivo function(s) of this receptor, the extent of programmed cell death was examined in the gut of wild-type and RET-deficient mouse embryos by TUNEL histochemistry. Our experiments show that a subpopulation of enteric NC undergoes apoptotic cell death specifically in the foregut of embryos lacking the RET receptor. We suggest that normal function of the RET RTK is required in vivo during early stages of ENS histogenesis for the survival of undifferentiated enteric NC and their derivatives.


2001 ◽  
Vol 280 (4) ◽  
pp. F695-F705 ◽  
Author(s):  
Patricia L. St. John ◽  
Ruixue Wang ◽  
Yong Yin ◽  
Jeffrey H. Miner ◽  
Barry Robert ◽  
...  

Glomerular basement membrane (GBM) assembly and maturation are marked by the replacement of laminin-1 (containing α1-, β1-, and γ1-chains) with laminin-11 (consisting of α5-, β2-, and γ1-chains). Similarly, the α1- and α2-chains of type IV collagen are replaced by collagen α3-, α4-, and α5(IV)-chains. The cellular origins of these molecules and mechanisms for isoform removal and substitution are unknown. To explore glomerular laminin isoform transitions in vitro, we assessed metanephric organ cultures. Standard culture conditions do not support endothelial cell differentiation, and glomerular structures that form in vitro are avascular. Nevertheless, extensive podocyte development occurs in these cultures, including the formation of foot processes and assembly of a GBM-like matrix. Here, we show that the podocyte-specific markers, glomerular epithelial protein 1 and nephrin, which are normally expressed in capillary loop stage glomeruli in vivo, are also expressed by glomerular figures that form in organ culture. However, the GBM-like segments that form in vitro do not undergo normal laminin isoform switching. Instead, both laminin α1- and α5-chains are present, as is the β1-chain, but not β2. When avascular organ-cultured kidneys are grafted into anterior eye chambers, however, kidney-derived angioblasts establish extensive vasculature by 6 days, and glomeruli are lined by endothelial cells. We evaluated embryonic day 12 ( E12) vascular endothelial growth factor receptor (Flk1) -lacZ kidneys that had first been grown in organ culture for 6–7 days and then grafted into wild-type mice. Correct laminin isoform substitution occurred and correlated with the appearance of endothelial cells expressing Flk1. Our findings indicate that endothelial cells, and/or factors present in the circulation, mediate normal GBM laminin isoform transitions in vivo.


2019 ◽  
Vol 34 (12) ◽  
pp. 2443-2455 ◽  
Author(s):  
J M D Portela ◽  
C M de Winter-Korver ◽  
S K M van Daalen ◽  
A Meißner ◽  
A A de Melker ◽  
...  

Abstract STUDY QUESTION Can the organ culture method be applied to both fresh and cryopreserved human (pre)pubertal testicular tissue as a strategy for in vitro spermatogenesis? SUMMARY ANSWER Although induction of spermatogenesis was not achieved in vitro, testicular architecture, endocrine function and spermatogonial proliferation were maintained in both fresh and cryopreserved testicular tissues. WHAT IS KNOWN ALREADY Cryopreservation of a testicular biopsy is increasingly offered as a fertility preservation strategy for prepubertal cancer patients. One of the proposed experimental approaches to restore fertility is the organ culture method, which, in the mouse model, successfully allows for in vitro development of spermatozoa from testicular biopsies. However, complete spermatogenesis from human prepubertal testicular tissue in such an organ culture system has not been demonstrated. STUDY DESIGN, SIZE, DURATION Testicular tissue was collected from nine (pre)pubertal boys diagnosed with cancer (ranging from 6 to 14 years of age) admitted for fertility preservation before treatment. Testicular biopsies were either immediately processed for culture or first cryopreserved, using a controlled slow freezing protocol, and thawed before culture. Organ culture of testicular fragments was performed in two different media for a maximum period of 5 weeks, targeting early cellular events (viability, meiosis and somatic differentiation) in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Fresh and cryopreserved-thawed testis fragments (1–2 mm3) were cultured at a gas–liquid interphase (34°C, 5% CO2) in Minimum Essential Medium alpha + 10% knock-out serum replacement medium containing 10−7 M melatonin and 10−6 M retinoic acid, with or without 3 IU/L FSH/LH supplementation. The effect of culture conditions on testicular fragments was weekly assessed by histological evaluation of germ cell development and immunohistochemical identification of spermatogonia (using MAGEA4), proliferative status of spermatogonia and Sertoli cells (using proliferating cell nuclear antigen [PCNA]), intratubular cell apoptosis (by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) and Sertoli cells maturation (using Anti-Müllerian Hormone [AMH] versus Androgen Receptor [AR]). Additionally, Leydig cells’ functionality was determined by measuring testosterone concentration in the culture media supernatants. MAIN RESULTS AND THE ROLE OF CHANCE Neither fresh nor cryopreserved human (pre)pubertal testicular fragments were able to initiate spermatogenesis in our organ culture system. Nonetheless, our data suggest that fresh and cryopreserved testicular fragments have comparable functionality in the described organ culture conditions, as reflected by the absence of significant differences in any of the weekly evaluated functional parameters. Additionally, no significant differences were found between the two tested media when culturing fresh and cryopreserved human testicular fragments. Although spermatogonia survived and remained proliferative in all culture conditions, a significant reduction of the spermatogonial population (P ≤ 0.001) was observed over the culture period, justified by a combined reduction of proliferation activity (P ≤ 0.001) and increased intratubular cell apoptosis (P ≤ 0.001). We observed a transient increase in Sertoli cell proliferative activity, loss of AMH expression (P ≤ 0.001) but no induction of AR expression. Leydig cell endocrine function was successfully stimulated in vitro as indicated by increased testosterone production in all conditions throughout the entire culture period (P ≤ 0.02). LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Although not noticeable in this study, we cannot exclude that if an optimized culture method ensuring complete spermatogenesis in human testicular fragments is established, differences in functional or spermatogenic efficiency between fresh and cryopreserved tissue might be found. WIDER IMPLICATIONS OF THE FINDINGS The current inability to initiate spermatogenesis in vitro from cryopreserved human testicular fragments should be included in the counselling of patients who are offered testicular tissue cryopreservation to preserve fertility. STUDY FUNDING/COMPETING INTEREST(S) This project was funded by EU-FP7-PEOPLE-2013-ITN 603568 `Growsperm’. None of the authors have competing interests. TRIAL REGISTRATION NUMBER Not applicable.


1973 ◽  
Vol 82 (4_suppl) ◽  
pp. 3-18

Twelfth and thirteenth gestation day mouse embryo otocysts have been explanted into an organ culture system that promotes advances in morphogenesis and differentiation of sensory structures. The pattern of morphogenesis that occurs “in vitro” is not equivalent to that which occurs in the “in vivo” environment. These morphogenetic changes occur with greatest frequency in the explanted thirteenth gestation day otocyst. The development of sensory structures occurs with equal distribution in the twelfth and thirteenth gestation day explanted otocysts. The thirteenth gestation day mouse otocyst favors the development of organ of Corti type formations, and the twelfth gestation day otocyst favors the development of maculae of sensory cells of a vestibular character in the organ culture system employed. The thirteenth gestation day otocyst requires a shorter period of “in vitro” development to produce differentiation of sensory structures. The sensory structures that develop “in vitro” follow the pattern of the sensory structures that develop “in vivo.”


Sign in / Sign up

Export Citation Format

Share Document