scholarly journals Bacterial Infection-Mimicking Three-Dimensional Phagocytosis and Chemotaxis in Electrospun Poly(ε-caprolactone) Nanofibrous Membrane

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 569
Author(s):  
Seung-Jun Lee ◽  
Perry Ayn Mayson A Maza ◽  
Gyu-Min Sun ◽  
Petr Slama ◽  
In-Jeong Lee ◽  
...  

In this study, we developed a three-dimensional (3D) in vitro infection model to investigate the crosstalk between phagocytes and microbes in inflammation using a nanofibrous membrane (NM). Poly(ε-caprolactone) (PCL)-NMs (PCL-NMs) were generated via electrospinning of PCL in chloroform. Staphylococcus aureus and phagocytes were able to adhere to the nanofibers and phagocytes engulfed S. aureus in the PCL-NM. The migration of phagocytes to S. aureus was evaluated in a two-layer co-culture system using PCL-NM. Neutrophils, macrophages and dendritic cells (DCs) cultured in the upper PCL-NM layer migrated to the lower PCL-NM layer containing bacteria. DCs migrated to neutrophils that cultured with bacteria and then engulfed neutrophils in two-layer system. In addition, phagocytes in the upper PCL-NM layer migrated to bacteria-infected MLE-12 lung epithelial cells in the lower PCL-NM layer. S. aureus-infected MLE-12 cells stimulated the secretion of tumor necrosis factor-α and IL-1α in 3D culture conditions, but not in 2D culture conditions. Therefore, the PCL-NM-based 3D culture system with phagocytes and bacteria mimics the inflammatory response to microbes in vivo and is applicable to the biomimetic study of various microbe infections.

Reproduction ◽  
2011 ◽  
Vol 141 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Candace M Tingen ◽  
Sarah E Kiesewetter ◽  
Jennifer Jozefik ◽  
Cristina Thomas ◽  
David Tagler ◽  
...  

Innovations in in vitro ovarian follicle culture have revolutionized the field of fertility preservation, but the successful culturing of isolated primary and small secondary follicles remains difficult. Herein, we describe a revised 3D culture system that uses a feeder layer of ovarian stromal cells to support early follicle development. This culture system allows significantly improved primary and early secondary follicle growth and survival. The stromal cells, consisting mostly of thecal cells and ovarian macrophages, recapitulate the in vivo conditions of these small follicles and increase the production of androgens and cytokines missing from stromal cell-free culture conditions. These results demonstrate that small follicles have a stage-specific reliance on the ovarian environment, and that growth and survival can be improved in vitro through a milieu created by pre-pubertal ovarian stromal cell co-culture.


2019 ◽  
Vol 101 (5) ◽  
pp. 906-915 ◽  
Author(s):  
Kathryn Wilsterman ◽  
Xinmiao Bao ◽  
Allegra D Estrada ◽  
Pierre Comizzoli ◽  
George E Bentley

Abstract Successful implantation requires complex signaling between the uterine endometrium and the blastocyst. Prior to the blastocyst reaching the uterus, the endometrium is remodeled by sex steroids and other signals to render the endometrium receptive. In vitro models have facilitated major advances in our understanding of endometrium preparation and endometrial–blastocyst communication in mice and humans, but these systems have not been widely adapted for use in other models which might generate a deeper understanding of these processes. The objective of our study was to use a recently developed, three-dimensional culture system to identify specific roles of female sex steroids in remodeling the organization and function of feline endometrial cells. We treated endometrial cells with physiologically relevant concentrations of estradiol and progesterone, either in isolation or in combination, for 1 week. We then examined size and density of three-dimensional structures, and quantified expression of candidate genes known to vary in response to sex steroid treatments and that have functional relevance to the decidualization process. Combined sex steroid treatments recapitulated organizational patterns seen in vivo; however, sex steroid manipulations did not induce expected changes to expression of decidualization-related genes. Our results demonstrate that sex steroids may not be sufficient for complete decidualization and preparation of the feline endometrium, thereby highlighting key areas of opportunity for further study and suggesting some unique functions of felid uterine tissues.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2754 ◽  
Author(s):  
Teruki Nii ◽  
Kimiko Makino ◽  
Yasuhiko Tabata

Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.


Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1186
Author(s):  
Bárbara Pinto ◽  
Ana C. Henriques ◽  
Patrícia M. A. Silva ◽  
Hassan Bousbaa

Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying the discovery of successful therapeutics. This is because 2D culture lacks cell–cell contacts and natural tumor microenvironment, important in tumor signaling and drug response, thereby resulting in a reduced malignant phenotype compared to the real tumor. In this sense, three-dimensional (3D) cultures of cancer cells that better recapitulate in vivo cell environments emerged as scientifically accurate and low cost cancer models for preclinical screening and testing of new drug candidates before moving to expensive and time-consuming animal models. Here, we provide a comprehensive overview of 3D tumor systems and highlight the strategies for spheroid construction and evaluation tools of targeted therapies, focusing on their applicability in cancer research. Examples of the applicability of 3D culture for the evaluation of the therapeutic efficacy of nanomedicines are discussed.


2012 ◽  
Vol 303 (8) ◽  
pp. C862-C871 ◽  
Author(s):  
Vinita Takiar ◽  
Kavita Mistry ◽  
Monica Carmosino ◽  
Nicole Schaeren-Wiemers ◽  
Michael J. Caplan

The polarized organization of epithelial cells is required for vectorial solute transport and may be altered in renal cystic diseases. Vesicle integral protein of 17 kDa (VIP17/MAL) is involved in apical vesicle transport. VIP17/MAL overexpression in vivo results in renal cystogenesis of unknown etiology. Renal cystogenesis can occur as a consequence of defects of the primary cilium. To explore the role of VIP17/MAL in renal cystogenesis and ciliogenesis, we examined the polarization and ciliary morphology of wild-type and VIP17/MAL overexpressing Madin-Darby canine kidney renal epithelial cells grown in two-dimensional (2D) and three-dimensional (3D) cyst culture. VIP17/MAL is apically localized when expressed in cells maintained in 2D and 3D culture. VIP17/MAL overexpressing cells produce more multilumen cysts compared with controls. While the distributions of basolateral markers are not affected, VIP17/MAL expression results in aberrant sorting of the apical marker gp135 to the primary cilium. VIP17/MAL overexpression is also associated with shortened or absent cilia. Immunofluorescence analysis performed on kidney sections from VIP17/MAL transgenic mice also demonstrates fewer and shortened cilia within dilated lumens ( P < 0.01). These studies demonstrate that VIP17/MAL overexpression results in abnormal cilium and cyst development, in vitro and in vivo, suggesting that VIP17/MAL overexpressing mice may develop cysts secondary to a ciliary defect.


2013 ◽  
Vol 13 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Francis H. Shen ◽  
Brian C. Werner ◽  
Haixiang Liang ◽  
Hulan Shang ◽  
Ning Yang ◽  
...  

2022 ◽  
Vol 2 (1) ◽  
pp. 10-27
Author(s):  
Deepankar Chakroborty ◽  
Veera K. Ojala ◽  
Anna M. Knittle ◽  
Jasmin Drexler ◽  
Mahlet Z. Tamirat ◽  
...  

Despite the relatively high frequency of somatic ERBB4 mutations in various cancer types, only a few activating ERBB4 mutations have been characterized, primarily due to lack of mutational hotspots in the ERBB4 gene. Here, we utilized our previously published pipeline, an in vitro screen for activating mutations, to perform an unbiased functional screen to identify potential activating ERBB4 mutations from a randomly mutated ERBB4 expression library. Ten potentially activating ERBB4 mutations were identified and subjected to validation by functional and structural analyses. Two of the 10 ERBB4 mutants, E715K and R687K, demonstrated hyperactivity in all tested cell models and promoted cellular growth under two-dimensional and three-dimensional culture conditions. ERBB4 E715K also promoted tumor growth in in vivo Ba/F3 cell mouse allografts. Importantly, all tested ERBB4 mutants were sensitive to the pan-ERBB tyrosine kinase inhibitors afatinib, neratinib, and dacomitinib. Our data indicate that rare ERBB4 mutations are potential candidates for ERBB4-targeted therapy with pan-ERBB inhibitors. Statement of Significance: ERBB4 is a member of the ERBB family of oncogenes that is frequently mutated in different cancer types but the functional impact of its somatic mutations remains unknown. Here, we have analyzed the function of over 8,000 randomly mutated ERBB4 variants in an unbiased functional genetics screen. The data indicate the presence of rare activating ERBB4 mutations in cancer, with potential to be targeted with clinically approved pan-ERBB inhibitors.


Author(s):  
Katsunori Kohda ◽  
Xuan Li ◽  
Naoki Soga ◽  
Risa Nagura ◽  
Tie Duerna ◽  
...  

The skin microbiota has been recognized to play an integral role in the physiology and pathology of the skin. The crosstalk between skin and the resident microbes has been extensively investigated using two-dimensional (2D) and three-dimensional (3D) cell cultures in vitro; however, skin colonization by multiple species and the effects of interspecific interactions on the structure and function of skin remains to be elucidated. This study reports the establishment of a mixed infection model, incorporating both commensal (Staphylococcus epidermidis) and pathogenic (Staphylococcus aureus) bacteria, based on a 3D human epidermal model. We observed that co-infecting the 3D epidermal model with S. aureus and S. epidermidis restricted the growth of S. aureus. In addition, S. aureus induced epidermal cytotoxicity, and the release of proinflammatory cytokines was attenuated by the S. aureus-S. epidermidis mixed infection model. S. epidermidis also inhibited the invasion of the deeper epidermis by S. aureus, eliciting protective effects on the integrity of the epidermal barrier. This 3D culture-based mixed infection model would be an effective replacement for existing animal models and 2D cell culture approaches for the evaluation of diverse biotic and abiotic factors involved in maintaining skin health.


Sign in / Sign up

Export Citation Format

Share Document