Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer

Development ◽  
1999 ◽  
Vol 126 (1) ◽  
pp. 75-84 ◽  
Author(s):  
C.L. Lien ◽  
C. Wu ◽  
B. Mercer ◽  
R. Webb ◽  
J.A. Richardson ◽  
...  

The homeobox gene Nkx2-5 is the earliest known marker of the cardiac lineage in vertebrate embryos. Nkx2-5 expression is first detected in mesodermal cells specified to form heart at embryonic day 7.5 in the mouse and expression is maintained throughout the developing and adult heart. In addition to the heart, Nkx2-5 is transiently expressed in the developing pharynx, thyroid and stomach. To investigate the mechanisms that initiate cardiac transcription during embryogenesis, we analyzed the Nkx2-5 upstream region for regulatory elements sufficient to direct expression of a lacZ transgene in the developing heart of transgenic mice. We describe a cardiac enhancer, located about 9 kilobases upstream of the Nkx2-5 gene, that fully recapitulates the expression pattern of the endogenous gene in cardiogenic precursor cells from the onset of cardiac lineage specification and throughout the linear and looping heart tube. Thereafter, as the atrial and ventricular chambers become demarcated, enhancer activity becomes restricted to the developing right ventricle. Transcription of Nkx2-5 in pharynx, thyroid and stomach is controlled by regulatory elements separable from the cardiac enhancer. This distal cardiac enhancer contains a high-affinity binding site for the cardiac-restricted zinc finger transcription factor GATA4 that is essential for transcriptional activity. These results reveal a novel GATA-dependent mechanism for activation of Nkx2-5 transcription in the developing heart and indicate that regulation of Nkx2-5 is controlled in a modular manner, with multiple regulatory regions responding to distinct transcriptional networks in different compartments of the developing heart.

Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 759-769 ◽  
Author(s):  
M. Manzanares ◽  
S. Cordes ◽  
L. Ariza-McNaughton ◽  
V. Sadl ◽  
K. Maruthainar ◽  
...  

During anteroposterior patterning of the developing hindbrain, the anterior expression of 3′ Hox genes maps to distinct rhombomeric boundaries and, in many cases, is upregulated in specific segments. Paralogous genes frequently have similar anterior boundaries of expression but it is not known if these are controlled by common mechanisms. The expression of the paralogous Hoxa3 and Hoxb3 genes extends from the posterior spinal cord up to the rhombomere (r) 4/5 boundary and both genes are upregulated specifically in r5. However, in this study, we have found that Hoxa3 expression is also upregulated in r6, showing that there are differences in segmental expression between paralogues. We have used transgenic analysis to investigate the mechanisms underlying the pattern of segmental expression of Hoxa3. We found that the intergenic region between Hoxa3 and Hoxa4 contains several enhancers, which summed together mediate a pattern of expression closely resembling that of the endogenous Hoxa3 gene. One enhancer specifically directs expression in r5 and r6, in a manner that reflects the upregulation of the endogenous gene in these segments. Deletion analysis localized this activity to a 600 bp fragment that was found to contain a single high-affinity binding site for the Maf bZIP protein Krml1, encoded by the kreisler gene. This site is necessary for enhancer activity and when multimerized it is sufficient to direct a kreisler-like pattern in transgenic embryos. Furthermore the r5/r6 enhancer activity is dependent upon endogenous kreisler and is activated by ectopic kreisler expression. This demonstrates that Hoxa3, along with its paralog Hoxb3, is a direct target of kreisler in the mouse hindbrain. Comparisons between the Krml1-binding sites in the Hoxa3 and Hoxb3 enhancers reveal that there are differences in both the number of binding sites and way that kreisler activity is integrated and restricted by these two control regions. Analysis of the individual sites revealed that they have different requirements for mediating r5/r6 and dorsal roof plate expression. Therefore, the restriction of Hoxb3 to r5 and Hoxa3 to r5 and r6, together with expression patterns of Hoxb3 in other vertebrate species suggests that these regulatory elements have a common origin but have later diverged during vertebrate evolution.


Development ◽  
1993 ◽  
Vol 119 (2) ◽  
pp. 419-431 ◽  
Author(s):  
T.J. Lints ◽  
L.M. Parsons ◽  
L. Hartley ◽  
I. Lyons ◽  
R.P. Harvey

We have isolated two murine homeobox genes, Nkx-2.5 and Nkx-2.6, that are new members of a sp sub-family of homeobox genes related to Drosophila NK2, NK3 and NK4/msh-2. In this paper, we focus on the Nkx-2.5 gene and its expression pattern during post-implantation development. Nkx-2.5 transcripts are first detected at early headfold stages in myocardiogenic progenitor cells. Expression preceeds the onset of myogenic differentiation, and continues in cardiomyocytes of embryonic, foetal and adult hearts. Transcripts are also detected in future pharyngeal endoderm, the tissue believed to produce the heart inducer. Expression in endoderm is only found laterally, where it is in direct apposition to promyocardium, suggesting an interaction between the two tissues. After foregut closure, Nkx-2.5 expression in endoderm is limited to the pharyngeal floor, dorsal to the developing heart tube. The thyroid primordium, a derivative of the pharyngeal floor, continues to express Nkx-2.5 after transcript levels diminish in the rest of the pharynx. Nkx-2.5 transcripts are also detected in lingual muscle, spleen and stomach. The expression data implicate Nkx-2.5 in commitment to and/or differentiation of the myocardial lineage. The data further demonstrate that cardiogenic progenitors can be distinguished at a molecular level by late gastrulation. Nkx-2.5 expression will therefore be a valuable marker in the analysis of mesoderm development and an early entry point for dissection of the molecular basis of myogenesis in the heart.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 4971-4982 ◽  
Author(s):  
Z. Yin ◽  
X.L. Xu ◽  
M. Frasch

The Drosophila tinman homeobox gene has a major role in early mesoderm patterning and determines the formation of visceral mesoderm, heart progenitors, specific somatic muscle precursors and glia-like mesodermal cells. These functions of tinman are reflected in its dynamic pattern of expression, which is characterized by initial widespread expression in the trunk mesoderm, then refinement to a broad dorsal mesodermal domain, and finally restricted expression in heart progenitors. Here we show that each of these phases of expression is driven by a discrete enhancer element, the first being active in the early mesoderm, the second in the dorsal mesoderm and the third in cardioblasts. We provide evidence that the early-active enhancer element is a direct target of twist, a gene encoding a basic helix-loop-helix (bHLH) protein, which is necessary for tinman activation. This 180 bp enhancer includes three E-box sequences which bind Twist protein in vitro and are essential for enhancer activity in vivo. Ectodermal misexpression of twist causes ectopic activation of this enhancer in ectodermal cells, indicating that twist is the only mesoderm-specific activator of early tinman expression. We further show that the 180 bp enhancer also includes negatively acting sequences. Binding of Even-skipped to these sequences appears to reduce twist-dependent activation in a periodic fashion, thus producing a striped tinman pattern in the early mesoderm. In addition, these sequences prevent activation of tinman by twist in a defined portion of the head mesoderm that gives rise to hemocytes. We find that this repression requires the function of buttonhead, a head-patterning gene, and that buttonhead is necessary for normal activation of the hematopoietic differentiation gene serpent in the same area. Together, our results show that tinman is controlled by an array of discrete enhancer elements that are activated successively by differential genetic inputs, as well as by closely linked activator and repressor binding sites within an early-acting enhancer, which restrict twist activity to specific areas within the twist expression domain.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3694-3703 ◽  
Author(s):  
SD Nimer ◽  
W Zhang ◽  
K Kwan ◽  
Y Whang ◽  
J Zhang ◽  
...  

Both copies of a repeated sequence CATT(A/T), located between bp -53 and -39 in the upstream region of the human GM-CSF gene, are required for mitogen-inducible promoter activity in T lymphocytes. However, the proteins that recognize this region of the granulocyte-macrophage colony-stimulating factor (GM-CSF) promoter, and are responsible for its transcriptional regulatory activity, have not been clearly identified. Using transient transfection assays, we demonstrate that a 19-bp oligonucleotide containing the CATT(A/T) repeats has strong constitutive enhancer activity in both T cell and non-T-cell lines, even though GM-CSF is not normally constitutively expressed by these cells. A 12-bp oligonucleotide, containing only the sequence CATTAATCATTT, lacks enhancer activity indicating that the nucleotides surrounding these sequences are critical for this enhancer activity. The sequence TTTCCT, which can bind members of the ets family of transcription factors, is located just 3′ of these CATT(A/T) repeats, and mutagenesis of the CCT sequence abolishes (1) the constitutive (and mitogen inducible) enhancer activity of the 19-bp GM-CSF sequences, (2) the responsiveness to transactivation by ets-1, and (3) the ability to specifically bind ets-1 and elf-1 in electrophoretic mobility shift assays (EMSA). We demonstrate that although T cells contain nuclear proteins capable of independently recognizing the ets binding site and the CATT(A/T) repeats in EMSAs, both of these regulatory elements are required for enhancer function. The strong constitutive activity of this 19-bp region suggests that negative regulation of the GM-CSF promoter is critical for the restricted expression pattern of GM-CSF mRNA.


2008 ◽  
Vol 8 ◽  
pp. 194-211 ◽  
Author(s):  
Loretta L. Hoover ◽  
Elizabeth G. Burton ◽  
Bonnie A. Brooks ◽  
Steven W. Kubalak

The importance of retinoid signaling during cardiac development has long been appreciated, but recently has become a rapidly expanding field of research. Experiments performed over 50 years ago showed that too much or too little maternal intake of vitamin A proved detrimental for embryos, resulting in a cadre of predictable cardiac developmental defects. Germline and conditional knockout mice have revealed which molecular players in the vitamin A signaling cascade are potentially responsible for regulating specific developmental events, and many of these molecules have been temporally and spatially characterized. It is evident that intact and controlled retinoid signaling is necessary for each stage of cardiac development to proceed normally, including cardiac lineage determination, heart tube formation, looping, epicardium formation, ventricular maturation, chamber and outflow tract septation, and coronary arteriogenesis. This review summarizes many of the significant milestones in this field and particular attention is given to recently uncovered cross-talk between retinoid signaling and other developmentally significant pathways. It is our hope that this review of the role of retinoid signaling during formation, remodeling, and maturation of the developing heart will serve as a tool for future discoveries.


Development ◽  
1999 ◽  
Vol 126 (19) ◽  
pp. 4187-4192 ◽  
Author(s):  
R.J. Schwartz ◽  
E.N. Olson

Heart formation in Drosophila is dependent on the homeobox gene tinman. The homeobox gene Nkx2-5 is closely related to tinman and is the earliest known marker for cardiogenesis in vertebrate embryos. Recent studies of cis-regulatory elements required for Nkx2-5 expression in the developing mouse heart have revealed an extraordinary array of independent cardiac enhancers, and associated negative regulatory elements, that direct transcription in distinct regions of the embryonic heart. These studies demonstrate the modularity in cardiac transcription, in which different regulatory elements respond to distinct sets of transcription factors to control gene expression in different compartments of the developing heart. We consider the potential mechanisms underlying such transcriptional complexity, its possible significance for cardiac function, and the implications for evolution of the multichambered heart.


2012 ◽  
Vol 446 (2) ◽  
pp. 203-212 ◽  
Author(s):  
Jenny L. Kerschner ◽  
Ann Harris

A critical cis-regulatory element for the CFTR (cystic fibrosis transmembrane conductance regulator) gene is located in intron 11, 100 kb distal to the promoter, with which it interacts. This sequence contains an intestine-selective enhancer and associates with enhancer signature proteins, such as p300, in addition to tissue-specific TFs (transcription factors). In the present study we identify critical TFs that are recruited to this element and demonstrate their importance in regulating CFTR expression. In vitro DNase I footprinting and EMSAs (electrophoretic mobility-shift assays) identified four cell-type-selective regions that bound TFs in vitro. ChIP (chromatin immunoprecipitation) identified FOXA1/A2 (forkhead box A1/A2), HNF1 (hepatocyte nuclear factor 1) and CDX2 (caudal-type homeobox 2) as in vivo trans-interacting factors. Mutation of their binding sites in the intron 11 core compromised its enhancer activity when measured by reporter gene assay. Moreover, siRNA (small interfering RNA)-mediated knockdown of CDX2 caused a significant reduction in endogenous CFTR transcription in intestinal cells, suggesting that this factor is critical for the maintenance of high levels of CFTR expression in these cells. The ChIP data also demonstrate that these TFs interact with multiple cis-regulatory elements across the CFTR locus, implicating a more global role in intestinal expression of the gene.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Pratik A Lalit ◽  
Max R Salick ◽  
Daryl O Nelson ◽  
Jayne M Squirrell ◽  
Christina M Shafer ◽  
...  

Several studies have reported reprogramming of fibroblasts (Fibs) to induced cardiomyocytes, and we have recently reprogrammed mouse Fibs to induced cardiac progenitor cells (iCPCs), which may be more favorable for cardiac repair because of their expandability and multipotency. Adult cardiac (AC), lung and tail-tip Fibs from an Nkx2.5-EYFP reporter mouse were reprogrammed using a combination of five defined factors into iCPCs. Transcriptome and immunocytochemistry analysis revealed that iCPCs were cardiac mesoderm-restricted progenitors that expressed CPC markers including Nkx2.5, Gata4, Irx4, Tbx5, Cxcr4, Flk1 etc. iCPCs could be extensively expanded (over 30 passages) while maintaining multipotency to differentiate in vitro into cardiac lineage cells including cardiomyocytes (CMs), smooth muscle cells and endothelial cells. iCPC derived CMs upon co-culture with mESC-derived CMs formed intercellular gap junctions, exhibited calcium transients, and contractions. The purpose of this study was to determine the in vivo potency of iCPCs. Given that the Nkx2.5-EYFP reporter identifies embryonic CPCs, we first tested the embryonic potency of iCPCs using an ex vivo whole embryo culture model injecting cells into the cardiac crescent (CC) of E8.5 mouse embryos and culturing for 24 to 48 hours. GFP labeled AC Fibs were first tested and live imaging revealed that after 24 hours these cells were rejected from the embryo proper and localized to the ecto-placental cone. In contrast, iCPCs reprogrammed from AC Fibs when injected into the CC localized to the developing heart tube and differentiated into MLC2v, αMHC and cardiac actin expressing CMs. Further we injected iCPCs into infarcted adult mouse hearts and determined their regenerative potential after 1-4 wks. The iCPCs significantly improved survival (p<0.01 Mantel-Cox test) in treated animals (75%) as compared to control (11%). Immunohistochemistry revealed that injected iCPCs localized to the scar area and differentiated into cardiac lineage cells including CMs (cardiac actin). These results indicate that lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for cardiac regenerative therapy as well as drug discovery and disease modeling.


1991 ◽  
Vol 11 (4) ◽  
pp. 1846-1853
Author(s):  
L Dobens ◽  
K Rudolph ◽  
E M Berger

A synthetic, 23-bp ecdysterone regulatory element (EcRE), derived from the upstream region of the Drosophila melanogaster hsp27 gene, was inserted adjacent to the herpes simplex virus thymidine kinase promoter fused to a bacterial gene for chloramphenicol acetyltransferase (CAT). Hybrid constructs were transfected into Drosophila S3 cells and assayed for ecdysterone-inducible CAT expression. In the absence of ecdysterone a tandem pair of EcREs repressed the high constitutive level of CAT activity found after transfection with the parent reporter plasmid alone. After hormone addition very high levels of CAT activity were observed. Insertion of the EcRE pair 3' of the CAT gene also led to high levels of ecdysterone-induced CAT expression, but the repression of high constitutive levels of CAT activity failed to occur. The EcRE-CAT construct was cotransfected with plasmids containing tandem 10-mers or 40-mers of the EcRE but lacking a reporter gene. These additional EcREs led to a reduced level of ecdysterone-induced CAT activity and to an elevation of basal CAT activity in the absence of hormone. The data suggest that the receptor binds to the EcRE in the absence of hormone, blocking basal transcription from a constitutive promoter. In the presence of ecdysterone, receptor-hormone binding to the EcRE leads to greatly enhanced transcription.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


Sign in / Sign up

Export Citation Format

Share Document