Directionality of wingless protein transport influences epidermal patterning in the Drosophila embryo

Development ◽  
1999 ◽  
Vol 126 (19) ◽  
pp. 4375-4384 ◽  
Author(s):  
M.M. Moline ◽  
C. Southern ◽  
A. Bejsovec

Active endocytotic processes are required for the normal distribution of Wingless (Wg) protein across the epidermal cells of each embryonic segment. To assess the functional consequences of this broad Wg distribution, we have devised a means of perturbing endocytosis in spatially restricted domains within the embryo. We have constructed a transgene expressing a dominant negative form of shibire (shi), the fly dynamin homologue. When this transgene is expressed using the GAL4-UAS system, we find that Wg protein distribution within the domain of transgene expression is limited and that Wg-dependent epidermal patterning events surrounding the domain of expression are disrupted in a directional fashion. Our results indicate that Wg transport in an anterior direction generates the normal expanse of naked cuticle within the segment and that movement of Wg in a posterior direction specifies diverse denticle cell fates in the anterior portion of the adjacent segment. Furthermore, we have discovered that interfering with posterior movement of Wg rescues the excessive naked cuticle specification observed in naked (nkd) mutant embryos. We propose that the nkd segment polarity phenotype results from unregulated posterior transport of Wg protein and therefore that wild-type Nkd function may contribute to the control of Wg movement within the epidermal cells of the segment.

Development ◽  
2001 ◽  
Vol 128 (14) ◽  
pp. 2711-2721 ◽  
Author(s):  
Yoshie Shimauchi ◽  
Seiko D. Murakami ◽  
Nori Satoh

Differentiation of notochord cells and mesenchyme cells of the ascidian Halocynthia roretzi requires interactions with neighboring endodermal cells and previous experiments suggest that these interactions require fibroblast growth factor (FGF). In the present study, we examined the role of FGF in these interactions by disrupting signaling using the dominant negative form of the FGF receptor. An FGF receptor gene of H. roretzi (HrFGFR) is expressed both maternally and zygotically. The maternally expressed transcript was ubiquitously distributed in fertilized eggs and in early embryos. Zygotic expression became evident by the neurula stage and transcripts were detected in epidermal cells of the posterior half of embryos. Synthetic mRNA for the dominant negative form of FGFR, in which the intracellular tyrosine kinase domain was deleted, was injected into fertilized eggs to interfere with the possible function of HrFGFR. Injected eggs cleaved and gastrulated the same as the control embryos. Analyses of the expression of differentiation markers in the experimental embryos indicated that the differentiation of epidermal cells, muscle cells and endodermal cells was not affected significantly. However, manipulated embryos showed downregulation of notochord-specific Brachyury expression and failure of notochord cell differentiation, resulting in the development of tailbud embryos with shorted tails. The expression of an actin gene that is normally expressed in mesenchyme cells was also suppressed. These results suggest that FGF signals are involved in differentiation of notochord cells and mesenchyme cells in Halocynthia embryos. Furthermore, the patterning of a neuron-specific tubulin gene expression was disturbed, suggesting that the formation of the nervous system was directly affected by disrupting FGF signals or indirectly affected due to the disruption of normal notochord formation.


Development ◽  
1993 ◽  
Vol 119 (Supplement) ◽  
pp. 105-114 ◽  
Author(s):  
Marcel van den Heuvel ◽  
John Klingensmith ◽  
Norbert Perrimon ◽  
Roel Nusse

By a complex and little understood mechanism, segment polarity genes control patterning in each segment of the Drosophila embryo. During this process, cell to cell communication plays a pivotal role and is under direct control of the products of segment polarity genes. Many of the cloned segment polarity genes have been found to be highly conserved in evolution, providing a model system for cellular interactions in other organisms. In Drosophila, two of these genes, engrailed and wingless, are expressed on either side of the parasegment border, wingless encodes a secreted molecule and engrailed a nuclear protein with a homeobox. Maintenance of engrailed expression is dependent on wingless and vice versa. To investigate the role of other segment polarity genes in the mutual control between these two genes, we have examined wingless and engrailed protein distribution in embryos mutant for each of the segment polarity genes. In embryos mutant for armadillo, dishevelled and porcupine, the changes in engrailed expression are identical to those in wingless mutant embryos, suggesting that their gene products act in the wingless pathway. In embryos mutant for hedgehog, fused, cubitus interruptus Dominant and gooseberry, expression of engrailed is affected to varying degrees. However wingless expression in the latter group decays in a similar way earlier than engrailed expression, indicating that these gene products might function in the maintenance of wingless expression. Using double mutant embryos, epistatic relationships between some segment polarity genes have been established. We present a model showing a current view of segment polarity gene interactions.


1994 ◽  
Vol 125 (3) ◽  
pp. 573-582 ◽  
Author(s):  
M A Riederer ◽  
T Soldati ◽  
A D Shapiro ◽  
J Lin ◽  
S R Pfeffer

Newly synthesized lysosomal enzymes bind to mannose 6-phosphate receptors (MPRs) in the TGN, and are carried to prelysosomes, where they are released. MPRs then return to the TGN for another round of transport. Rab9 is a ras-like GTPase which facilitates MPR recycling to the TGN in vitro. We show here that a dominant negative form of rab9, rab9 S21N, strongly inhibited MPR recycling in living cells. The block was specific in that the rates of biosynthetic protein transport, fluid phase endocytosis and receptor-mediated endocytosis were unchanged. Expression of rab9 S21N was accompanied by a decrease in the efficiency of lysosomal enzyme sorting. Cells compensated for the presence of the mutant protein by inducing the synthesis of both soluble and membrane-associated lysosomal enzymes, and by internalizing lysosomal enzymes that were secreted by default. These data show that MPRs are limiting in the secretory pathway of cells expressing rab9 S21N and document the importance of MPR recycling and the rab9 GTPase for efficient lysosomal enzyme delivery.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 291-301 ◽  
Author(s):  
A. Hidalgo ◽  
P. Ingham

Intrasegmental patterning in the Drosophila embryo requires the activity of the segment polarity genes. The acquisition of positional information by cells during embryogenesis is reflected in the dynamic patterns of expression of several of these genes. In the case of patched, early ubiquitous expression is followed by its repression in the anterior portion of each parasegment; subsequently each broad band of expression splits into two narrow stripes. In this study we analyse the contribution of other segment polarity gene functions to the evolution of this pattern; we find that the first step in patched regulation is under the control of engrailed whereas the second requires the activity of both cubitus interruptusD and patched itself. Furthermore, the products of engrailed, wingless and hedgehog are essential for maintaining the normal pattern of expression of patched.


2005 ◽  
Vol 19 (9) ◽  
pp. 2320-2334 ◽  
Author(s):  
Amena Archer ◽  
Dominique Sauvaget ◽  
Valérie Chauffeton ◽  
Pierre-Etienne Bouchet ◽  
Jean Chambaz ◽  
...  

Abstract In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4α and γ. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4α repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4α and γ functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.


2008 ◽  
Vol 83 (3) ◽  
pp. 1350-1358 ◽  
Author(s):  
Mengxi Jiang ◽  
Johanna R. Abend ◽  
Billy Tsai ◽  
Michael J. Imperiale

ABSTRACT BK virus (BKV) is a nonenveloped, ubiquitous human polyomavirus that establishes a persistent infection in healthy individuals. It can be reactivated, however, in immunosuppressed patients and cause severe diseases, including polyomavirus nephropathy. The entry and disassembly mechanisms of BKV are not well defined. In this report, we characterized several early events during BKV infection in primary human renal proximal tubule epithelial (RPTE) cells, which are natural host cells for BKV. Our results demonstrate that BKV infection in RPTE cells involves an acidic environment relatively early during entry, followed by transport along the microtubule network to reach the endoplasmic reticulum (ER). A distinct disulfide bond isomerization and cleavage pattern of the major capsid protein VP1 was observed, which was also influenced by alterations in pH and disruption of trafficking to the ER. A dominant negative form of Derlin-1, an ER protein required for retro-translocation of certain misfolded proteins, inhibited BKV infection. Consistent with this, we detected an interaction between Derlin-1 and VP1. Finally, we show that proteasome function is also linked to BKV infection and capsid rearrangement. These results indicate that BKV early entry and disassembly are highly regulated processes involving multiple cellular components.


Sign in / Sign up

Export Citation Format

Share Document