Physical and genetic interactions between Alx4 and Cart1

Development ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 359-369 ◽  
Author(s):  
S. Qu ◽  
S.C. Tucker ◽  
Q. Zhao ◽  
B. deCrombrugghe ◽  
R. Wisdom

Alx4 and Cart1 are closely related members of the family of transcription factors that contain the paired-type homeodomain. In contrast to other types of homeodomains, the paired-type homeodomain has been shown to mediate high-affinity sequence-specific DNA binding to palindromic elements as either homodimers or as heterodimers with other family members. Alx4 and Cart1 are co-expressed at several sites during development, including the craniofacial mesenchyme, the mesenchymal derivatives of neural crest cells in the first branchial arch and the limb bud mesenchyme. Because of the molecular similarity and overlapping expression pattern, we have analyzed the functional and genetic relationships between Alx4 and Cart1. The two proteins have similar DNA-binding activity in vitro and can form DNA-binding heterodimers; furthermore, they activate transcription of reporter genes that contain high-affinity DNA-binding sites in cell culture in a similar manner. Therefore, at least by these criteria, the two proteins are functionally redundant. Analysis of double mutant animals reveals several genetic interactions. First, mutation of Cart1 exacerbates Alx4-dependent polydactyly in a manner that is dependent on gene dosage. Second, there are complex genetic interactions in the craniofacial region that reveal a role for both genes in the fusion of the nasal cartilages and proper patterning of the mandible, as well as other craniofacial structures. Third, double mutant mice show a split sternum that is not detected in mice with any other genotype. Interpreted in the context of the biochemical characterization, the genetic analysis suggests that Alx4 and Cart1 are indeed functionally redundant, and reveal both unique and redundant functions for these genes in development.

1997 ◽  
Vol 323 (3) ◽  
pp. 791-800 ◽  
Author(s):  
Tatyana MERKULOVA ◽  
Marguerite LUCAS ◽  
Carole JABET ◽  
Noël LAMANDÉ ◽  
Jean-Denis ROUZEAU ◽  
...  

The glycolytic enzyme enolase (EC 4.2.1.11) is active as dimers formed from three subunits encoded by different genes. The embryonic αα isoform remains distributed in many adult cell types, whereas a transition towards ββ and γγ isoforms occurs in striated muscle cells and neurons respectively. It is not understood why enolase exhibits tissue-specific isoforms with very close functional properties. We approached this problem by the purification of native ββ-enolase from mouse hindlimb muscles and by raising specific antibodies of high titre against this protein. These reagents have been useful in revealing a heterogeneity of the β-enolase subunit that changes with in vivo and in vitro maturation. A basic carboxypeptidase appears to be involved in generating an acidic β-enolase variant, and may regulate plasminogen binding by this subunit. We show for the first time that pure ββ-enolase binds with high affinity the adjacent enzymes in the glycolytic pathway (pyruvate kinase and phosphoglycerate mutase), favouring the hypothesis that these three enzymes form a functional glycolytic segment. ββ-Enolase binds with high affinity sarcomeric troponin but not actin and tropomyosin. Some of these binding properties are shared by the αα-isoenolase, which is also expressed in striated muscle, but not by the neuron-specific γγ-enolase. These results support the idea that specific interactions with macromolecules will address muscle enolase isoforms at the subcellular site where ATP, produced through glycolysis, is most needed for contraction. Such a specific targeting could be modulated by post-translational modifications.


1992 ◽  
Vol 12 (6) ◽  
pp. 2662-2672
Author(s):  
Z Kozmik ◽  
S Wang ◽  
P Dörfler ◽  
B Adams ◽  
M Busslinger

The CD19 protein is expressed on the surface of all B-lymphoid cells with the exception of terminally differentiated plasma cells and has been implicated as a signal-transducing receptor in the control of proliferation and differentiation. Here we demonstrate complete correlation between the expression pattern of the CD19 gene and the B-cell-specific transcription factor BSAP in a large panel of B-lymphoid cell lines. The human CD19 gene has been cloned, and several BSAP-binding sites have been mapped by in vitro protein-DNA binding studies. In particular, a high-affinity BSAP-binding site instead of a TATA sequence is located in the -30 promoter region upstream of a cluster of heterogeneous transcription start sites. Moreover, this site is occupied by BSAP in vivo in a CD19-expressing B-cell line but not in plasma or HeLa cells. This high-affinity site has been conserved in the promoters of both human and mouse CD19 genes and was furthermore shown to confer B-cell specificity to a beta-globin reporter gene in transient transfection experiments. In addition, BSAP was found to be the only abundant DNA-binding activity of B-cell nuclear extracts that interacts with the CD19 promoter. Together, this evidence strongly implicates BSAP in the regulation of the CD19 gene.


1994 ◽  
Vol 14 (3) ◽  
pp. 2058-2065
Author(s):  
B Arcangioli ◽  
T D Copeland ◽  
A J Klar

The pattern of mating-type switching in cell pedigrees of the fission yeast Schizosaccharomyces pombe is dictated by the inheritance of specific DNA chains at the mating-type locus (mat1). The recombination event essential for switching is initiated by a site-specific double-strand break at mat1. The switch-activating protein, Sap1, binds in vitro to a mat1 cis-acting site that was shown earlier to be essential for efficient mating-type switching. We isolated the sap1 gene by using oligonucleotides corresponding to the amino acid sequence of purified Sap1 protein. The sequence of that gene predicted a 30-kDa protein with no significant homology to other canonical DNA-binding protein motifs. To facilitate its biochemical characterization, Sap1 was expressed in Escherichia coli. The protein expressed in bacteria displayed the same DNA-binding specificities as the protein purified from S. pombe. Interestingly, analysis of a sap1 null mutation showed that the gene is essential for growth even in a strain in which mating-type switching is prohibited because of a defect in generation of the double-strand break. Thus, the sap1 gene product implicated in mating-type switching is shown to be essential for cell viability.


1991 ◽  
Vol 11 (7) ◽  
pp. 3633-3641 ◽  
Author(s):  
T Chakraborty ◽  
T J Brennan ◽  
L Li ◽  
D Edmondson ◽  
E N Olson

Myogenin is a muscle-specific transcription factor that can activate myogenesis; it belongs to a family of transcription factors that share homology within a basic region and an adjacent helix-loop-helix (HLH) motif. Although myogenin alone binds DNA inefficiently, in the presence of the widely expressed HLH proteins E12 and E47 (encoded by the E2A gene), it forms heterooligomers that bind with high affinity to a DNA sequence known as a kappa E-2 site. In contrast, E47 and to a lesser extent E12 are both able to bind the kappa E-2 site relatively efficiently as homooligomers. To define the relative contributions of the basic regions of myogenin and E12 to DNA binding and muscle-specific gene activation, we created chimeras of the two proteins by swapping their basic regions. We showed that myogenin's weak affinity for the kappa E-2 site is attributable to inefficient homooligomerization and that the myogenin basic domain alone can mediate high-affinity DNA binding when placed in E12. Within a heterooligomeric complex, two basic regions were required to form a high-affinity DNA-binding domain. Basic-domain mutants of myogenin or E2A gene products that cannot bind DNA retained the ability to oligomerize and could abolish DNA binding of the wild-type proteins in vitro. These myogenin and E2A mutants also acted as trans-dominant inhibitors of muscle-specific gene activation in vivo. These findings support the notion that muscle-specific gene activation requires oligomerization between myogenin and E2A gene products and that E2A gene products play an important role in myogenesis by enhancing the DNA-binding activity of myogenin, as well as other myogenic HLH proteins.


1992 ◽  
Vol 12 (6) ◽  
pp. 2662-2672 ◽  
Author(s):  
Z Kozmik ◽  
S Wang ◽  
P Dörfler ◽  
B Adams ◽  
M Busslinger

The CD19 protein is expressed on the surface of all B-lymphoid cells with the exception of terminally differentiated plasma cells and has been implicated as a signal-transducing receptor in the control of proliferation and differentiation. Here we demonstrate complete correlation between the expression pattern of the CD19 gene and the B-cell-specific transcription factor BSAP in a large panel of B-lymphoid cell lines. The human CD19 gene has been cloned, and several BSAP-binding sites have been mapped by in vitro protein-DNA binding studies. In particular, a high-affinity BSAP-binding site instead of a TATA sequence is located in the -30 promoter region upstream of a cluster of heterogeneous transcription start sites. Moreover, this site is occupied by BSAP in vivo in a CD19-expressing B-cell line but not in plasma or HeLa cells. This high-affinity site has been conserved in the promoters of both human and mouse CD19 genes and was furthermore shown to confer B-cell specificity to a beta-globin reporter gene in transient transfection experiments. In addition, BSAP was found to be the only abundant DNA-binding activity of B-cell nuclear extracts that interacts with the CD19 promoter. Together, this evidence strongly implicates BSAP in the regulation of the CD19 gene.


1993 ◽  
Vol 296 (1) ◽  
pp. 161-167 ◽  
Author(s):  
G G J M Kuiper ◽  
P E de Ruiter ◽  
J Trapman ◽  
G Jenster ◽  
A O Brinkmann

Translation of androgen receptor (AR) cRNA in a reticulocyte lysate and subsequent analysis of the translation products by SDS/PAGE showed a protein with an apparent molecular mass of 108 kDa. Scatchard-plot analysis revealed a single binding component with high affinity for R1881 (Kd = 0.3 nM). All AR molecules synthesized specifically bound steroid. No evidence for AR phosphorylation during in vitro synthesis was found. When AR was labelled with [3H]R1881 and analysed on sucrose-density gradients, a complex of approx. 6 S was observed. The complex was shifted to a higher sedimentation coefficient after incubation with a monoclonal AR antibody directed against an epitope in the DNA-binding domain. In the presence as well as the absence of hormone, AR molecules were able to bind to DNA-cellulose without an activation step. Gel retardation assays revealed that the AR forms complexes with a DNA element containing glucocorticoid-responsive element/androgen-responsive element sequences. Receptor-DNA interactions were stabilized by different polyclonal antibodies directed against either the N- or C-terminal part of the AR and were abolished by an antibody directed against the DNA-binding domain of the receptor. In conclusion, translation of AR cRNA in vitro yields an activated AR protein which binds steroid with high affinity. It is proposed that AR antibodies enhance AR-DNA binding by stabilizing AR dimers when bound to DNA.


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 195-203 ◽  
Author(s):  
H.C. Lu ◽  
G. Eichele ◽  
C. Thaller

Retinoids regulate various aspects of vertebrate development through the action of two types of receptors, the retinoic acid receptors (RARs) and the retinoid-X-receptors (RXRs). Although RXRs bind 9-cis-retinoic acid (9cRA) with high affinity, in vitro experiments suggest that RXRs are for the most part not liganded, but serve as auxiliary factors forming heterodimers with liganded partner receptors such as RAR. Here we have used RXR- and RAR-specific ligands 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-napthyl)ethenyl]b enzoic acid (LG69) and (E)-4-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-prope nyl]benzoic acid (TTNPB), and show that, in the context of an embryo, liganded RXR can mediate retinoid signal transduction. This conclusion emerges from examining the induction of several retinoid-responsive genes in the limb bud (Hoxb-6/-8, RARbeta) and in the developing central nervous system (Hoxb-1, otx-2). RARbeta and Hoxb-1 genes were most effectively activated by a combination of TTNPB and LG69, suggesting that the activation of these genes benefits from the presence of ligand-bound RAR and ligand-bound RXR. Hoxb-6/-8 genes were most efficiently induced by LG69, suggesting that liganded RXR can activate these genes. The regulation of the expression of the otx-2 gene was complex; expression was repressed by TTNPB, but such repression was relieved when LG69 was provided together with TTNPB, suggesting that ligand-bound RXR can overcome repression of transcription exerted by liganded RAR. Based on these findings, we propose that in our experimental system in which ligands are provided exogenously, transcriptional regulation of several genes involves liganded RXR.


2004 ◽  
Vol 24 (3) ◽  
pp. 1022-1032 ◽  
Author(s):  
Victoria E. H. Wang ◽  
Tara Schmidt ◽  
Jianzhu Chen ◽  
Phillip A. Sharp ◽  
Dean Tantin

ABSTRACT Oct-1 is a sequence-specific DNA binding transcription factor that is believed to regulate a large group of tissue-specific and ubiquitous genes. Both Oct-1 and the related but tissue-restricted Oct-2 protein bind to a DNA sequence termed the octamer motif (5′-ATGCAAAT-3′) with equal affinity in vitro. To address the role of Oct-1 in vivo, an Oct-1-deficient mouse strain was generated by gene targeting. Oct-1-deficient embryos died during gestation, frequently appeared anemic, and suffered from a lack of Ter-119-positive erythroid precursor cells. This defect was cell intrinsic. Fibroblasts derived from these embryos displayed a dramatic decrease in Oct-1 DNA binding activity and a lack of octamer-dependent promoter activity in transient transfection assays. Interestingly, several endogenous genes thought to be regulated by Oct-1 showed no change in expression. When crossed to Oct-2 +/− animals, transheterozygotes were recovered at a very low frequency. These findings suggest a critical role for Oct-1 during development and a stringent gene dosage effect with Oct-2 in mediating postnatal survival.


1994 ◽  
Vol 304 (3) ◽  
pp. 981-985 ◽  
Author(s):  
D Civitareale ◽  
A Saiardi ◽  
P Falasca

Thyroid transcription factor 2 binds to the promoters of both thyroglobulin and thyroperoxidase genes, two markers of thyroid tissue differentiation, and its binding modulates the activity of both promoters. In this paper we describe the purification of thyroid transcription factor 2 essentially to homogeneity and demonstrate that it is a thyroid-specific DNA-binding protein. Furthermore, we provide a biochemical characterization suggesting that thyroid transcription factor 2 binds to DNA as a dimer and that it is a zinc-finger DNA-binding protein regulated in vitro by the redox state.


Sign in / Sign up

Export Citation Format

Share Document