Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain
Experiments involving tissue recombinations have implicated both early vertical and later planar signals in the specification and polarisation of the midbrain. Here we investigate the role of fibroblast growth factors in regulating these processes in the avian embryo. We show that Fgf4 is expressed in the notochord anterior to Hensen's node before transcripts for the earliest molecular marker of midbrain tissue in the avian embryo, En1, are detected. The presence of notochord is required for the expression of En1 in neural plate explants in vitro and FGF4 mimics this effect of notochord tissue. Subsequently, a second member of the fibroblast growth factor family, Fgf8, is expressed in the isthmus in a manner consistent with it providing a polarising signal for the developing midbrain. Using a retroviral vector to express En1 ectopically, we show that En1 can induce Fgf8 expression in midbrain and posterior diencephalon. Results of the introduction of FGF8 protein into the anterior midbrain or posterior diencephalon are consistent with it being at least part of the isthmic activity which can repolarise the former tissue and respecify the latter to a midbrain fate. However, the ability of FGF8 to induce expression of genes which have earlier onsets of expression than Fgf8 itself, namely En1 and Pax2, strongly suggests that the normal function of FGF8 is in maintaining patterns of gene expression in posterior midbrain. Finally, we provide evidence that FGF8 also provides mitogenic stimulation during avian midbrain development.