Control of the migratory pathway of facial branchiomotor neurones

Development ◽  
2000 ◽  
Vol 127 (24) ◽  
pp. 5297-5307 ◽  
Author(s):  
S. Garel ◽  
M. Garcia-Dominguez ◽  
P. Charnay

Facial branchiomotor (fbm) neurones undergo a complex migration in the segmented mouse hindbrain. They are born in the basal plate of rhombomere (r) 4, migrate caudally through r5, and then dorsally and radially in r6. To study how migrating cells adapt to their changing environment and control their pathway, we have analysed this stereotyped migration in wild-type and mutant backgrounds. We show that during their migration, fbm neurones regulate the expression of genes encoding the cell membrane proteins TAG-1, Ret and cadherin 8. Specific combinations of these markers are associated with each migratory phase in r4, r5 and r6. In Krox20 and kreisler mutant mouse embryos, both of which lack r5, fbm neurones migrate dorsally into the anteriorly positioned r6 and adopt an r6-specific expression pattern. In embryos deficient for Ebf1, a gene normally expressed in fbm neurones, part of the fbm neurones migrate dorsally within r5. Accordingly, fbm neurones prematurely express a combination of markers characteristic of an r6 location. These data suggest that fbm neurones adapt to their changing environment by switching on and off specific genes, and that Ebf1 is involved in the control of these responses. In addition, they establish a close correlation between the expression pattern of fbm neurones and their migratory behaviour, suggesting that modifications in gene expression participate in the selection of the local migratory pathway.

2019 ◽  
Author(s):  
Baoxiu Liu ◽  
Guo Wei ◽  
Zhongyi Hu ◽  
Guodong Wang

AbstractBenzaldedyde, commonly detected in plant VOC (volatile organic compounds) profiling, is derived from phenylalanine. However, the last enzymatic step for benzaldedyde formation, designated as benzaldehyde synthase, remains elusive for long time. Here, we demonstrated that cinnamoyl-CoA reductases are responsible for benzaldedyde production in cucumber (Cucumis sativus L.). Comprehensive tissue specificity of VOC profiling revealed that benzaldehyde was specifically accumulated in root and flower of cucumber plants. VOC-gene correlation analysis suggested that several CCRs are candidate genes for benzaldehyde production: CsaCCR7 had a root-specific expression pattern while CsaCCR9 and CsaCCR18 showed a flower-specific expression pattern. Enzymatic assay demonstrated that CsaCCR7, CsaCCR9 and CsaCCR18 convert benzoyl-CoA to benzaldehyde. Subcellular localization experiments revealed that CsaCCR7 and CsaCCR18 are localized in cytosol, while CsaCCR9 was localized in peroxisome. In contrast to the long-standing view that CCR enzymes are involved in lignin biosynthesis in plants, it is the first time here to add a new biochemical role of CCR as benzaldehyde synthase in plants.HighlightsBenzaldehyde is mainly produced in flower and root of cucumber plants.14 genes encoding CCR enzyme from cucumber are comprehensively analyzed.Three CsaCCRs, function as benzaldehyde synthases, utilize benzoyl-CoA as substrate to produce benzaldehyde in vitro.


2016 ◽  
Vol 62 (3) ◽  
pp. 283-289 ◽  
Author(s):  
V.V. Miroshnikova ◽  
A.A. Panteleeva ◽  
E.A. Bazhenova ◽  
E.P. Demina ◽  
T.S. Usenko ◽  
...  

Tissue specific expression of genes encoding cholesterol transporters ABCA1 and ABCG1 as well as genes encoding the most important transcriptional regulators of adipogenesis – LXRa, LXRb, PPARg and RORa has been investigated in intraabdominal adipose tissue (IAT) samples.A direct correlation between the content of ABCA1 and ABCG1 proteins with RORa protein level (r=0.480, p<0.05; r=0.435, p<0.05, respectively) suggests the role of the transcription factor RORa in the regulation of IAT ABCA1 and ABCG1 protein levels. ABCA1 and ABCG1 gene expression positively correlated with obesity indicators such as body mass index (BMI) (r=0.522, p=0.004; r=0.594, p=0.001, respectively) and waist circumference (r=0.403, p=0.033; r=0.474, p=0.013, respectively). The development of obesity is associated with decreased IAT levels of RORa and LXRb mRNA (p=0.016 and p=0.002, respectively). These data suggest that the nuclear factor RORa can play a significant role in the regulation of cholesterol metabolism and control IAT expression of ABCA1 and ABCG1, while the level of IAT LXRb gene expression may be an important factor associated with the development of obesity.


2021 ◽  
Vol 11 ◽  
Author(s):  
Voddu Suresh ◽  
Deepti Parida ◽  
Aliva P. Minz ◽  
Manisha Sethi ◽  
Bhabani S. Sahoo ◽  
...  

The Syrian golden hamster (Mesocricetus auratus) has recently been demonstrated as a clinically relevant animal model for SARS-CoV-2 infection. However, lack of knowledge about the tissue-specific expression pattern of various proteins in these animals and the unavailability of reagents like antibodies against this species hampers these models’ optimal use. The major objective of our current study was to analyze the tissue-specific expression pattern of angiotensin-converting enzyme 2, a proven functional receptor for SARS-CoV-2 in different organs of the hamster. Using two different antibodies (MA5-32307 and AF933), we have conducted immunoblotting, immunohistochemistry, and immunofluorescence analysis to evaluate the ACE2 expression in different tissues of the hamster. Further, at the mRNA level, the expression of Ace2 in tissues was evaluated through RT-qPCR analysis. Both the antibodies detected expression of ACE2 in kidney, small intestine, tongue, and liver. Epithelium of proximal tubules of kidney and surface epithelium of ileum expresses a very high amount of this protein. Surprisingly, analysis of stained tissue sections showed no detectable expression of ACE2 in the lung or tracheal epithelial cells. Similarly, all parts of the large intestine were negative for ACE2 expression. Analysis of tissues from different age groups and sex didn’t show any obvious difference in ACE2 expression pattern or level. Together, our findings corroborate some of the earlier reports related to ACE2 expression patterns in human tissues and contradict others. We believe that this study’s findings have provided evidence that demands further investigation to understand the predominant respiratory pathology of SARS-CoV-2 infection and disease.


2019 ◽  
Author(s):  
Dick R Nässel ◽  
Dennis Pauls ◽  
Wolf Huetteroth

Neuropeptides constitute a large and diverse class of signaling molecules that are produced by many types of neurons, neurosecretory cells, endocrines and other cells. Many neuropeptides display pleiotropic actions either as neuromodulators, co-transmitters or circulating hormones, while some play these roles concurrently. Here, we highlight pleiotropic functions of neuropeptides and different levels of neuropeptide signaling in the brain, from context-dependent orchestrating signaling by higher order neurons, to local executive modulation in specific circuits. Additionally, orchestrating neurons receive peptidergic signals from neurons conveying organismal internal state cues and relay these to executive circuits. We exemplify these levels of signaling with four neuropeptides, SIFamide, short neuropeptide F, allatostatin-A and leucokinin, each with a specific expression pattern and level of complexity in signaling.


Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5857-5866 ◽  
Author(s):  
C.H. Yang ◽  
M.A. Simon ◽  
H. McNeill

The Drosophila eye is divided into dorsal and ventral mirror image fields that are separated by a sharp boundary known as the equator. We have previously demonstrated that Mirror, a homeodomain-containing putative transcription factor with a dorsal-specific expression pattern in the eye, induces the formation of the equator at the boundary between mirror-expressing and non-expressing cells. Here, we provide evidence that suggests mirror regulates equator formation by two mechanisms. First, mirror defines the location of the equator by creating a boundary of fringe expression at the mid-point of the eye. We show that mirror creates this boundary by repressing fringe expression in the dorsal half of the eye. Significantly, a boundary of mirror expression cannot induce the formation of an equator unless a boundary of fringe expression is formed simultaneously. Second, mirror acts to sharpen the equator by reducing the mixing of dorsal and ventral cells at the equator. In support of this model, we show that clones of cells lacking mirror function tend not to mix with surrounding mirror-expressing cells. The tendency of mirror-expressing and non-expressing cells to avoid mixing with each other is not determined by their differences in fringe expression. Thus mirror acts to regulate equator formation by both physically separating the dorsal cells from ventral cells, and restricting the formation of a fng expression boundary to the border where the dorsal and ventral cells meet.


2020 ◽  
Vol 119 (11) ◽  
pp. 2335-2348
Author(s):  
Kai Wang ◽  
Karla Kretschmannova ◽  
Rafael M. Prévide ◽  
Kosara Smiljanic ◽  
Qing Chen ◽  
...  

1999 ◽  
Vol 30 (10) ◽  
pp. 1201-1206 ◽  
Author(s):  
Peter Berger ◽  
Gerold Untergasser ◽  
Martin Hermann ◽  
Anton Hittmair ◽  
Stephan Madersbacher ◽  
...  

2019 ◽  
Vol 87 ◽  
pp. 96-104
Author(s):  
Miren Dong ◽  
Xiaorui Song ◽  
Min Wang ◽  
Weilin Wang ◽  
Peng Zhang ◽  
...  

Genomics ◽  
1999 ◽  
Vol 59 (1) ◽  
pp. 66-76 ◽  
Author(s):  
Liat Mintz ◽  
Emilia Galperin ◽  
Metsada Pasmanik-Chor ◽  
Sandra Tulzinsky ◽  
Yael Bromberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document