scholarly journals Regulation of ABCA1 and ABCG1 gene expression in the intraabdominal adipose tissue

2016 ◽  
Vol 62 (3) ◽  
pp. 283-289 ◽  
Author(s):  
V.V. Miroshnikova ◽  
A.A. Panteleeva ◽  
E.A. Bazhenova ◽  
E.P. Demina ◽  
T.S. Usenko ◽  
...  

Tissue specific expression of genes encoding cholesterol transporters ABCA1 and ABCG1 as well as genes encoding the most important transcriptional regulators of adipogenesis – LXRa, LXRb, PPARg and RORa has been investigated in intraabdominal adipose tissue (IAT) samples.A direct correlation between the content of ABCA1 and ABCG1 proteins with RORa protein level (r=0.480, p<0.05; r=0.435, p<0.05, respectively) suggests the role of the transcription factor RORa in the regulation of IAT ABCA1 and ABCG1 protein levels. ABCA1 and ABCG1 gene expression positively correlated with obesity indicators such as body mass index (BMI) (r=0.522, p=0.004; r=0.594, p=0.001, respectively) and waist circumference (r=0.403, p=0.033; r=0.474, p=0.013, respectively). The development of obesity is associated with decreased IAT levels of RORa and LXRb mRNA (p=0.016 and p=0.002, respectively). These data suggest that the nuclear factor RORa can play a significant role in the regulation of cholesterol metabolism and control IAT expression of ABCA1 and ABCG1, while the level of IAT LXRb gene expression may be an important factor associated with the development of obesity.

2009 ◽  
Vol 38 (3) ◽  
pp. 342-350 ◽  
Author(s):  
Stephen Welle ◽  
Andrew Cardillo ◽  
Michelle Zanche ◽  
Rabi Tawil

There is much interest in developing anti-myostatin agents to reverse or prevent muscle atrophy in adults, so it is important to characterize the effects of reducing myostatin activity after normal muscle development. For assessment of the effect of loss of myostatin signaling on gene expression in muscle, RNA from mice with postdevelopmental myostatin knockout was analyzed with oligonucleotide microarrays. Myostatin was undetectable in muscle within 2 wk after Cre recombinase activation in 4-month-old male mice with floxed myostatin genes. Three months after myostatin depletion, muscle mass had increased 26% (vs. 2% after induction of Cre activity in mice with normal myostatin genes), at which time the expression of several hundred genes differed in knockout and control mice at nominal P < 0.01. In contrast to previously reported effects of constitutive myostatin knockout, postdevelopmental knockout did not downregulate expression of genes encoding slow isoforms of contractile proteins or genes encoding proteins involved in energy metabolism. Several collagen genes were expressed at 20–50% lower levels in the myostatin-deficient muscles, which had ∼25% less collagen than normal muscles as reflected by hydroxyproline content. Most of the other genes affected by myostatin depletion have not been previously linked to myostatin signaling. Gene set enrichment analysis suggested that Smads are not the only transcription factors with reduced activity after myostatin depletion. These data reinforce other evidence that myostatin regulates collagen production in muscle and demonstrate that many of the previously reported effects of constitutive myostatin deficiency do not occur when myostatin is knocked out in mature muscles.


2018 ◽  
Author(s):  
Ian Huck ◽  
Sumedha Gunewardena ◽  
Regina Espanol-Suner ◽  
Holger Willenbring ◽  
Udayan Apte

AbstractHepatocyte Nuclear Factor 4 alpha (HNF4α) is critical for hepatic differentiation. Recent studies have highlighted its role in inhibition of hepatocyte proliferation and tumor suppression. However, the role of HNF4α in liver regeneration is not known. We hypothesized that hepatocytes modulate HNF4α activity when navigating between differentiated and proliferative states during liver regeneration. Western blot analysis revealed a rapid decline in nuclear and cytoplasmic HNF4α protein levels accompanied with decreased target gene expression within 1 hour after 2/3 partial hepatectomy (post-PH) in C57BL/6J mice. HNF4α protein expression did not recover to the pre-PH levels until day 3. Hepatocyte-specific deletion of HNF4α (HNF4α-KO) in mice resulted in 100% mortality post-PH despite increased proliferative marker expression throughout regeneration. Sustained loss of HNF4α target gene expression throughout regeneration indicated HNF4α-KO mice were unable to compensate for loss of HNF4α transcriptional activity. Deletion of HNF4α resulted in sustained proliferation accompanied by c-myc and cyclin D1 over expression and a complete deficiency of hepatocyte function after PH. Interestingly, overexpression of degradation-resistant HNF4α in hepatocytes did not prevent initiation of regeneration after PH. Finally, AAV8-mediated reexpression of HNF4α in hepatocytes of HNF4α-KO mice post-PH restored HNF4α protein levels, induced target gene expression and improved survival of HNF4α-KO mice post-PH. In conclusion, these data indicate that HNF4α reexpression following initial decrease is critical for hepatocytes to exit from cell cycle and resume function during the termination phase of liver regeneration. These results reveal the role of HNF4α in liver regeneration and have implications for therapy of liver failure.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3251
Author(s):  
Albert Gibert-Ramos ◽  
Miguel Z. Martín-González ◽  
Anna Crescenti ◽  
M. Josepa Salvadó

Scientists are focusing on bioactive ingredients to counteract obesity. We evaluated whether a mix containing grape seed proanthocyanidin extract (GSPE), anthocyanins, conjugated linoleic acid (CLA), and chicken feet hydrolysate (CFH) could reduce body fat mass and also determined which mechanisms in the white adipose tissue (WAT) and the brown adipose tissue (BAT) were affected by the treatment. The mix or vehicle (VH) were administered for three weeks to obese rats fed a cafeteria (CAF) diet. Biometric measures, indirect calorimetry, and gene expression in WAT and BAT were analyzed as was the histology of the inguinal WAT (IWAT). The individual compounds were also tested in the 3T3-L1 cell line. The mix treatment resulted in a significant 15% reduction in fat (25.01 ± 0.91 g) compared to VH treatment (21.19 ± 1.59 g), and the calorimetry results indicated a significant increase in energy expenditure and fat oxidation. We observed a significant downregulation of Fasn mRNA and an upregulation of Atgl and Hsl mRNA in adipose depots in the group treated with the mix. The IWAT showed a tendency of reduction in the number of adipocytes, although no differences in the total adipocyte area were found. GSPE and anthocyanins modulated the lipid content and downregulated the gene and protein levels of Fasn compared to the untreated group in 3T3-L1 cells. In conclusion, this mix is a promising treatment against obesity, reducing the WAT of obese rats fed a CAF diet, increasing energy expenditure and fat oxidation, and modifying the expression of genes involved in lipid metabolism of the adipose tissue.


Development ◽  
2000 ◽  
Vol 127 (24) ◽  
pp. 5297-5307 ◽  
Author(s):  
S. Garel ◽  
M. Garcia-Dominguez ◽  
P. Charnay

Facial branchiomotor (fbm) neurones undergo a complex migration in the segmented mouse hindbrain. They are born in the basal plate of rhombomere (r) 4, migrate caudally through r5, and then dorsally and radially in r6. To study how migrating cells adapt to their changing environment and control their pathway, we have analysed this stereotyped migration in wild-type and mutant backgrounds. We show that during their migration, fbm neurones regulate the expression of genes encoding the cell membrane proteins TAG-1, Ret and cadherin 8. Specific combinations of these markers are associated with each migratory phase in r4, r5 and r6. In Krox20 and kreisler mutant mouse embryos, both of which lack r5, fbm neurones migrate dorsally into the anteriorly positioned r6 and adopt an r6-specific expression pattern. In embryos deficient for Ebf1, a gene normally expressed in fbm neurones, part of the fbm neurones migrate dorsally within r5. Accordingly, fbm neurones prematurely express a combination of markers characteristic of an r6 location. These data suggest that fbm neurones adapt to their changing environment by switching on and off specific genes, and that Ebf1 is involved in the control of these responses. In addition, they establish a close correlation between the expression pattern of fbm neurones and their migratory behaviour, suggesting that modifications in gene expression participate in the selection of the local migratory pathway.


2017 ◽  
Author(s):  
Felicia K. Ooi ◽  
Veena Prahlad

AbstractLearning, a process by which animals modify their behavior as a result of experience, allows organisms to synthesize information from their surroundings to acquire resources and predict danger. Here we show that prior encounter with the odor of pathogenic bacteria prepares Caenorhabditis elegans to survive actual exposure to the pathogen by increasing HSF-1-dependent expression of genes encoding molecular chaperones. Learning-mediated enhancement of chaperone gene expression requires serotonin. Serotonin primes HSF-1 to enhance the expression of molecular chaperone genes by promoting its localization to RNA polymerase II–enriched nuclear loci, even prior to transcription. HSF-1-dependent chaperone gene expression ensues, however, only if and when animals encounter the pathogen. Thus, learning equips C. elegans to better survive environmental dangers by pre-emptively and specifically initiating transcriptional mechanisms throughout the whole organism. These studies provide one plausible basis for the protective role of environmental enrichment in disease.


2014 ◽  
Vol 42 (2) ◽  
pp. 495-499 ◽  
Author(s):  
Mingzhan Xue ◽  
Naila Rabbani ◽  
Paul J. Thornalley

The glyoxalase system is an important component of the enzymatic defence against glycation, preventing particularly quantitatively and functionally important glycation of protein and DNA by methylglyoxal. Expression of genes encoding Glo1 (glyoxalase I) and Glo2 (glyoxalase II) may be induced or suppressed, and rates of proteolysis of Glo1 and Glo2 proteins may change in health and disease. Quantitative assessment of glyoxalase gene expression at the mRNA and protein levels has become a key part of glyoxalase system characterization. For mRNA, there is the common technique of real-time RT (reverse transcription)–PCR and direct quantification of mRNA copy number by the Nanostring™ method. For glyoxalase protein quantification, there is the commonly used Western blotting, and also immunoassay and, in proteome-wide studies, quantitative proteomics and proteome dynamics. We provide protocols for the common methods below and briefly review their application.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashley A. Krull ◽  
Deborah O. Setter ◽  
Tania F. Gendron ◽  
Sybil C. L. Hrstka ◽  
Michael J. Polzin ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in neurodegenerative diseases. Methods In this study, we characterized changes in morphology, metabolism, and gene expression occurring in human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (aCSF) as well as examined relevant protein levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS). Results Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs. Conclusions Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials remain viable and may provide a therapeutic benefit to patients.


2020 ◽  
Author(s):  
Maik Hintze ◽  
Sebastian Griesing ◽  
Marion Michels ◽  
Birgit Blanck ◽  
Lena Wischhof ◽  
...  

AbstractWe investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2090-2093 ◽  
Author(s):  
Dirk Kienle ◽  
Axel Benner ◽  
Alexander Kröber ◽  
Dirk Winkler ◽  
Daniel Mertens ◽  
...  

The mutation status and usage of specific VH genes such as V3-21 and V1-69 are potentially independent pathogenic and prognostic factors in chronic lymphocytic leukemia (CLL). To investigate the role of antigenic stimulation, we analyzed the expression of genes involved in B-cell receptor (BCR) signaling/activation, cell cycle, and apoptosis control in CLL using these specific VH genes compared to VH mutated (VH-MUT) and VH unmutated (VH-UM) CLL not using these VH genes. V3-21 cases showed characteristic expression differences compared to VH-MUT (up: ZAP70 [or ZAP-70]; down: CCND2, P27) and VH-UM (down: PI3K, CCND2, P27, CDK4, BAX) involving several BCR-related genes. Similarly, there was a marked difference between VH unmutated cases using the V1-69 gene and VH-UM (up: FOS; down: BLNK, SYK, CDK4, TP53). Therefore, usage of specific VH genes appears to have a strong influence on the gene expression pattern pointing to antigen recognition and ongoing BCR stimulation as a pathogenic factor in these CLL subgroups.


2001 ◽  
Vol 281 (4) ◽  
pp. G865-G869 ◽  
Author(s):  
Steven D. Clarke

This review addresses the hypothesis that polyunsaturated fatty acids (PUFA), particularly those of the n-3 family, play pivotal roles as “fuel partitioners” in that they direct fatty acids away from triglyceride storage and toward oxidation and they enhance glucose flux to glycogen. In doing this, PUFA may reduce the risk of enhanced cellular apoptosis associated with excessive cellular lipid accumulation. PUFA exert their beneficial effects by upregulating the expression of genes encoding proteins involved in fatty acid oxidation while simultaneously downregulating genes encoding proteins of lipid synthesis. PUFA govern oxidative gene expression by activating the transcription factor peroxisome proliferator-activated receptor-α. PUFA suppress lipogenic gene expression by reducing the nuclear abundance and DNA binding affinity of transcription factors responsible for imparting insulin and carbohydrate control to lipogenic and glycolytic genes. In particular, PUFA suppress the nuclear abundance and expression of sterol regulatory element binding protein-1 and reduce the DNA binding activities of nuclear factor Y, stimulatory protein 1, and possibly hepatic nuclear factor-4. Collectively, the studies discussed suggest that the fuel “repartitioning” and gene expression actions of PUFA should be considered among the criteria used in defining the dietary needs of n-6 and n-3 fatty acids and in establishing the dietary ratio of n-6 to n-3 fatty acids needed for optimum health benefit.


Sign in / Sign up

Export Citation Format

Share Document