Expression of achaete-scute homologues in discrete proneural clusters on the developing notum of the medfly Ceratitis capitata, suggests a common origin for the stereotyped bristle patterns of higher Diptera

Development ◽  
2000 ◽  
Vol 127 (7) ◽  
pp. 1411-1420 ◽  
Author(s):  
C. Wulbeck ◽  
P. Simpson

The stereotyped positioning of sensory bristles in Drosophila has been shown to result from complex spatiotemporal regulation of the proneural achaete-scute genes, that relies on an array of cis-regulatory elements and spatially restricted transcriptional activators such as Pannier. Other species of derived schizophoran Diptera have equally stereotyped, but different, bristle patterns. Divergence of bristle patterns could arise from changes in the expression pattern of proneural genes, resulting from evolution of the cis-regulatory sequences and/or altered expression patterns of transcriptional regulators. Here we describe the isolation of achaete-scute homologues in Ceratitis capitata, a species of acalyptrate Schizophora whose bristle pattern differs slightly from that of Drosophila. At least three genes, scute, lethal of scute and asense have been conserved, thus demonstrating that gene duplication within the achaete-scute complex preceded the separation of the families Drosophilidae and Tephritidae, whose common ancestor goes back more than 100 million years. The expression patterns of these genes provide evidence for conservation of many cis-regulatory elements as well as a common origin for the stereotyped patterns seen on the scutum of many Schizophora. Some aspects of the transcriptional regulation have changed, however, and correlate in the notum with differences in the bristle pattern. The Ceratitis pannier gene was isolated and displays a conserved expression domain in the notum.

Development ◽  
1989 ◽  
Vol 107 (2) ◽  
pp. 189-200 ◽  
Author(s):  
U. Grossniklaus ◽  
H.J. Bellen ◽  
C. Wilson ◽  
W.J. Gehring

We have stained the ovaries of nearly 600 different Drosophila strains carrying single copies of a P-element enhancer detector. This transposon detects neighbouring genomic transcriptional regulatory sequences by means of a beta-galactosidase reporter gene. Numerous strains are stained in specific cells and at specific stages of oogenesis and provide useful ovarian markers for cell types that in some cases have not previously been recognized by morphological criteria. Since recent data have suggested that a substantial number of the regulatory elements detected by enhancer detection control neighbouring genes, we discuss the implications of our results concerning ovarian gene expression patterns in Drosophila. We have also identified a small number of insertion-linked recessive mutants that are sterile or lead to ovarian defects. We observe a strong correlation with specific germ line staining patterns in these strains, suggesting that certain patterns are more likely to be associated with female sterile genes than others. On the basis of our results, we suggest new strategies, which are not primarily based on the generation of mutants, to screen for and isolated female sterile genes.


2007 ◽  
Vol 27 (8) ◽  
pp. 2934-2951 ◽  
Author(s):  
Ronald L. Chandler ◽  
Kelly J. Chandler ◽  
Karen A. McFarland ◽  
Douglas P. Mortlock

ABSTRACT Bone morphogenetic protein 2 (encoded by Bmp2) has been implicated as an important signaling ligand for osteoblast differentiation and bone formation and as a genetic risk factor for osteoporosis. To initially survey a large genomic region flanking the mouse Bmp2 gene for cis-regulatory function, two bacterial artificial chromosome (BAC) clones that extend far upstream and downstream of the gene were engineered to contain a lacZ reporter cassette and tested in transgenic mice. Each BAC clone directs a distinct subset of normal Bmp2 expression patterns, suggesting a modular arrangement of distant Bmp2 regulatory elements. Strikingly, regulatory sequences required for Bmp2 expression in differentiating osteoblasts, as well as tooth buds, hair placodes, kidney, and other tissues, are located more than 53 kilobases 3′ to the promoter. By testing BACs with engineered deletions across this distant 3′ region, we parsed these regulatory elements into separate locations and more closely refined the location of the osteoblast progenitor element. Finally, a conserved osteoblast progenitor enhancer was identified within a 656-bp sequence located 156.3 kilobases 3′ from the promoter. The identification of this enhancer should permit further investigation of upstream regulatory mechanisms that control Bmp2 transcription during osteoblast differentiation and are relevant to further studies of Bmp2 as a candidate risk factor gene for osteoporosis.


1996 ◽  
Vol 16 (8) ◽  
pp. 4524-4534 ◽  
Author(s):  
M J McGrew ◽  
N Bogdanova ◽  
K Hasegawa ◽  
S H Hughes ◽  
R N Kitsis ◽  
...  

The myosin light-chain 1/3 locus (MLC1/3) is regulated by two promoters and a downstream enhancer element which produce two protein isoforms in fast skeletal muscle at distinct stages of mouse embryogenesis. We have analyzed the expression of transcripts from the internal MLC3 promoter and determined that it is also expressed in the atria of the heart. Expression from the MLC3 promoter in these striated muscle lineages is differentially regulated during development. In transgenic mice, the MLC3 promoter is responsible for cardiac-specific reporter gene expression while the downstream enhancer augments expression in skeletal muscle. Examination of the methylation status of endogenous and transgenic promoter and enhancer elements indicates that the internal promoter is not regulated in a manner similar to that of the MLC1 promoter or the downstream enhancer. A GATA protein consensus sequence in the proximal MLC3 promoter but not the MLC1 promoter binds with high affinity to GATA-4, a cardiac muscle- and gut-specific transcription factor. Mutation of either the MEF2 or GATA motifs in the MLC3 promoter attenuates its activity in both heart and skeletal muscles, demonstrating that MLC3 expression in these two diverse muscle types is dependent on common regulatory elements.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 867-875 ◽  
Author(s):  
G. Ryan ◽  
V. Steele-Perkins ◽  
J.F. Morris ◽  
F.J. Rauscher ◽  
G.R. Dressler

The developmental, regulatory gene Pax-2 is activated during early kidney morphogenesis and repressed in mature renal epithelium. Persistent Pax-2 expression is also observed in a variety of kidney tumors. Yet, little is known about the signals regulating this transient expression pattern in the developing kidney. We have examined the spatial and temporal expression patterns of Pax-2 and the Wilm's tumor suppresser protein WT1 with specific antibodies in developing mouse kidneys. A marked increase in WT1 protein levels coincided precisely with down-regulation of the Pax-2 gene in the individual precursor cells of the visceral glomerular epithelium, suggesting a direct effect of the WT1 repressor protein on Pax-2 regulatory elements. To examine whether WT1 could directly repress Pax-2 transcription, binding of WT1 to three high affinity sites in the 5′ untranslated Pax-2 leader sequence was demonstrated by DNAseI footprinting analysis. Furthermore, co-transfection assays using CAT reporter constructs under the control of Pax-2 regulatory sequences demonstrated WT1-dependent transcriptional repression. These three WT1 binding sites were also able to repress transcription, in a WT1-dependent manner, when inserted between a heterologous promoter and the reporter gene. The data indicate that Pax-2 is a likely target gene for WT1 and suggest a direct link, at the level of transcriptional regulation, between a developmental control gene, active in undifferentiated and proliferating cells, and a known tumor suppressor gene.


2018 ◽  
Author(s):  
Alicia Madgwick ◽  
Marta Silvia Magri ◽  
Christelle Dantec ◽  
Damien Gailly ◽  
Ulla-Maj Fiuza ◽  
...  

Ascidian species of the Phallusia and Ciona genera are distantly related, their last common ancestor dating several hundred million years ago. Although their genome sequences have extensively diverged since this radiation, Phallusia and Ciona species share almost identical early morphogenesis and stereotyped cell lineages. Here, we explored the evolution of transcriptional control between P. mammillata and C. robusta. We combined genome-wide mapping of open chromatin regions in both species with a comparative analysis of the regulatory sequences of a test set of 10 pairs of orthologous early regulatory genes with conserved expression patterns. We find that ascidian chromatin accessibility landscapes obey similar rules as in other metazoa. Open-chromatin regions are short, highly conserved within each genus and cluster around regulatory genes. The dynamics of chromatin accessibility and closest-gene expression are strongly correlated during early embryogenesis. Open-chromatin regions are highly enriched in cis-regulatory elements: 73% of 49 open chromatin regions around our test genes behaved as either distal enhancers or proximal enhancer/promoters following electroporation in Phallusia eggs. Analysis of this datasets suggests a pervasive use in ascidians of shadow enhancers with partially overlapping activities. Cross-species electroporations point to a deep conservation of both the trans-regulatory logic between these distantly-related ascidians and the cis-regulatory activities of individual enhancers. Finally, we found that the relative order and approximate distance to the transcription start site of open chromatin regions can be conserved between Ciona and Phallusia species despite extensive sequence divergence, a property that can be used to identify orthologous enhancers, whose regulatory activity can partially diverge.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Davide Seruggia ◽  
Almudena Fernández ◽  
Marta Cantero ◽  
Ana Fernández-Miñán ◽  
José Luis Gomez-Skarmeta ◽  
...  

Abstract Control of gene expression is dictated by cell-type specific regulatory sequences that physically organize the structure of chromatin, including promoters, enhancers and insulators. While promoters and enhancers convey cell-type specific activating signals, insulators prevent the cross-talk of regulatory elements within adjacent loci and safeguard the specificity of action of promoters and enhancers towards their targets in a tissue specific manner. Using the mouse tyrosinase (Tyr) locus as an experimental model, a gene whose mutations are associated with albinism, we described the chromatin structure in cells at two distinct transcriptional states. Guided by chromatin structure, through the use of Chromosome Conformation Capture (3C), we identified sequences at the 5′ and 3′ boundaries of this mammalian gene that function as enhancers and insulators. By CRISPR/Cas9-mediated chromosomal deletion, we dissected the functions of these two regulatory elements in vivo in the mouse, at the endogenous chromosomal context, and proved their mechanistic role as genomic insulators, shielding the Tyr locus from the expression patterns of adjacent genes.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3253-3262 ◽  
Author(s):  
B.W. Bisgrove ◽  
J.J. Essner ◽  
H.J. Yost

The embryonic midline is crucial for the development of embryonic pattern including bilateral symmetry and left-right asymmetry. In zebrafish, lefty1 (lft1) and lefty2 (lft2) have distinct midline expression domains along the anteroposterior axis that overlap with the expression patterns of the nodal-related genes cyclops and squint. Altered expression patterns of lft1 and lft2 in zebrafish mutants that affect midline development suggests different upstream pathways regulate each expression domain. Ectopic expression analysis demonstrates that a balance of lefty and cyclops signaling is required for normal mesendoderm patterning and goosecoid, no tail and pitx2 expression. In late somite-stage embryos, lft1 and lft2 are expressed asymmetrically in the left diencephalon and left lateral plate respectively, suggesting an additional role in laterality development. A model is proposed by which the vertebrate midline, and thus bilateral symmetry, is established and maintained by antagonistic interactions among co-expressed members of the lefty and nodal subfamilies of TGF-beta signaling molecules.


1994 ◽  
Vol 64 (3) ◽  
pp. 167-181 ◽  
Author(s):  
Dali Ding ◽  
Howard D. Lipshitz

SummaryOver twenty distinct families of long terminal direct repeat (LTR)-containing retrotransposons have been identified in Drosophila melanogaster. While there have been extensive analyses of retrotransposon transcription in cultured cells, there have been few studies of the spatial expression of retrotransposons during normal development. Here we report a detailed analysis of the spatial expression patterns of fifteen families of retrotransposons during Drosophila melanogaster embryogenesis (17.6, 297, 412, 1731, 3S18, blood, copia, gypsy, HMS Beagle, Kermit/flea, mdg1, mdg3, opus, roo/B104 and springer). In each case, analyses were carried out in from two to four wild-type strains. Since the chromosomal insertion sites of any particular family of retrotransposons vary widely among wild-type strains, a spatial expression pattern that is conserved among strains is likely to have been generated through interaction of host transcription factors with cis-regulatory elements resident in the retrotransposons themselves. All fifteen families of retrotransposons showed conserved patterns of spatially and temporally regulated expression during embryogenesis. These results suggest that all families of retrotransposons carry cis-acting elements that control their spatial and temporal expression patterns. Thus, transposition of a retrotransposon into or near a particular host gene-possibly followed by an excision event leaving behind the retrotransposon's cis-regulatory sequences-might impose novel developmental control on such a host gene. Such a mechanism would serve to confer evolutionarily significant alterations in the spatio-temporal control of gene expression.


2018 ◽  
Author(s):  
Niklas Bruse ◽  
Simon J. van Heeringen

AbstractBackgroundTranscription factors (TFs) bind to specific DNA sequences, TF motifs, in cis-regulatory sequences and control the expression of the diverse transcriptional programs encoded in the genome. The concerted action of TFs within the chromatin context enables precise temporal and spatial expression patterns. To understand how TFs control gene expression it is essential to model TF binding. TF motif information can help to interpret the exact role of individual regulatory elements, for instance to predict the functional impact of non-coding variants.FindingsHere we present GimmeMotifs, a comprehensive computational framework for TF motif analysis. Compared to the previously published version, this release adds a whole range of new functionality and analysis methods. It now includes tools for de novo motif discovery, motif scanning and sequence analysis, motif clustering, calculation of performance metrics and visualization. Included with GimmeMotifs is a non-redundant database of clustered motifs. Compared to other motif databases, this collection of motifs shows competitive performance in discriminating bound from unbound sequences. Using our de novo motif discovery pipeline we find large differences in performance between de novo motif finders on ChIP-seq data. Using an ensemble method such as implemented in GimmeMotifs will generally result in improved motif identification compared to a single motif finder. Finally, we demonstrate maelstrom, a new ensemble method that enables comparative analysis of TF motifs between multiple high-throughput sequencing experiments, such as ChIP-seq or ATAC-seq. Using a collection of ~200 H3K27ac ChIP-seq data sets we identify TFs that play a role in hematopoietic differentiation and lineage commitment.ConclusionGimmeMotifs is a fully-featured and flexible framework for TF motif analysis. It contains both command-line tools as well as a Python API and is freely available at: https://github.com/vanheeringen-lab/gimmemotifs.


2020 ◽  
Author(s):  
Davide Seruggia ◽  
Almudena Fernández ◽  
Marta Cantero ◽  
Ana Fernández-Miñán ◽  
José Luis Gomez-Skarmeta ◽  
...  

ABSTRACTControl of gene expression is dictated by cell-type specific regulatory sequences that physically organize the structure of chromatin, including promoters, enhancers and insulators. While promoters and enhancers convey cell-type specific activating signals, insulators prevent the cross-talk of regulatory elements within adjacent loci and safeguard the specificity of action of promoters and enhancers towards their targets in a tissue specific manner. Using the mouse tyrosinase (Tyr) locus as an experimental model, a gene whose mutations are associated with albinism, we described the chromatin structure in cells at two distinct transcriptional states. Guided by chromatin structure, through the use of Chromosome Conformation Capture (3C), we identified sequences at the 5’ and 3’ boundaries of this mammalian gene that function as enhancers and insulators. By CRISPR/Cas9-mediated chromosomal deletion, we dissected the functions of these two regulatory elements in vivo in the mouse, at the endogenous chromosomal context, and proved their role as genomic insulators, shielding the Tyr locus from the expression patterns of adjacent genes.


Sign in / Sign up

Export Citation Format

Share Document