EGL-38 Pax regulates theovo-related genelin-48duringCaenorhabditis elegansorgan development

Development ◽  
2001 ◽  
Vol 128 (15) ◽  
pp. 2857-2865 ◽  
Author(s):  
Andrew D. Johnson ◽  
Daniel Fitzsimmons ◽  
James Hagman ◽  
Helen M. Chamberlin

The Pax gene egl-38 plays an important role in the development of several organs in C. elegans. To understand how a Pax transcription factor influences distinct developmental choices in different cells and tissue types, we have characterized a second gene, lin-48. lin-48 functions with egl-38 in the development of one structure, the hindgut, but not in other tissues such as the egg-laying system. We show that lin-48 encodes a C2H2 zinc-finger protein that is similar to the product of the Drosophila gene ovo and is expressed in the hindgut cells that develop abnormally in lin-48 mutants. We present evidence that lin-48 is a target for EGL-38 in hindgut cells. We show that lin-48 requires egl-38 for its expression in the hindgut. Using deletion analysis, we have identified two elements in the lin-48 promoter that are necessary for lin-48 expression. We demonstrate that EGL-38 binds with high affinity to one of these elements. In addition, we have observed genetic interactions between mutations in the lin-48 promoter and specific alleles of egl-38. These experiments demonstrate a functional link between Pax and Ovo transcription factors, and provide a model for how Pax transcription factors can regulate different target genes in different cells.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Heesun Kim ◽  
Yue-He Ding ◽  
Shan Lu ◽  
Mei-Qing Zuo ◽  
Wendy Tan ◽  
...  

Germlines shape and balance heredity, integrating and regulating information from both parental and foreign sources. Insights into how germlines handle information have come from the study of factors that specify or maintain the germline fate. In early Caenorhabditis elegans embryos, the CCCH zinc finger protein PIE-1 localizes to the germline where it prevents somatic differentiation programs. Here, we show that PIE-1 also functions in the meiotic ovary where it becomes SUMOylated and engages the small ubiquitin-like modifier (SUMO)-conjugating machinery. Using whole-SUMO-proteome mass spectrometry, we identify HDAC SUMOylation as a target of PIE-1. Our analyses of genetic interactions between pie-1 and SUMO pathway mutants suggest that PIE-1 engages the SUMO machinery both to preserve the germline fate in the embryo and to promote Argonaute-mediated surveillance in the adult germline.


2005 ◽  
Vol 386 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Alexander E.F. Smith ◽  
Farzin Farzaneh ◽  
Kevin G. Ford

AbstractIn order to demonstrate that an existing zinc-finger protein can be simply modified to enhance DNA binding and sequence discrimination in both episomal and chromatin contexts using existing zinc-finger DNA recognition code data, and without recourse to phage display and selection strategies, we have examined the consequences of a single zinc-finger extension to a synthetic three-zinc-finger VP16 fusion protein, on transcriptional activation from model target promoters harbouring the zinc-finger binding sequences. We report a nearly 10-fold enhanced transcriptional activation by the four-zinc-finger VP16 fusion protein relative to the progenitor three-finger VP16 protein in transient assays and a greater than five-fold enhancement in stable reporter-gene expression assays. A marked decrease in transcriptional activation was evident for the four-zinc-finger derivative from mutated regulatory regions compared to the progenitor protein, as a result of recognition site-size extension. This discriminatory effect was shown to be protein concentration-dependent. These observations suggest that four-zinc-finger proteins are stable functional motifs that can be a significant improvement over the progenitor three-zinc-finger protein, both in terms of specificity and the ability to target transcriptional function to promoters, and that single zinc-finger extension can therefore have a significant impact on DNA zinc-finger protein interactions. This is a simple route for modifying or enhancing the binding properties of existing synthetic zinc-finger-based transcription factors and may be particularly suited for the modification of endogenous zinc-finger transcription factors for promoter biasing applications.


2006 ◽  
Vol 13 ◽  
pp. S385
Author(s):  
Willemijn M. Gommans ◽  
Pamela M.J. McLaughlin ◽  
Robbert Cool ◽  
Beatrice I. Lindhout ◽  
Bert van der Zaal ◽  
...  

2012 ◽  
Vol 109 (38) ◽  
pp. 15229-15234 ◽  
Author(s):  
Bethany A. Buck-Koehntop ◽  
Robyn L. Stanfield ◽  
Damian C. Ekiert ◽  
Maria A. Martinez-Yamout ◽  
H. Jane Dyson ◽  
...  

Methylation of CpG dinucleotides in DNA is a common epigenetic modification in eukaryotes that plays a central role in maintenance of genome stability, gene silencing, genomic imprinting, development, and disease. Kaiso, a bifunctional Cys2His2 zinc finger protein implicated in tumor-cell proliferation, binds to both methylated CpG (mCpG) sites and a specific nonmethylated DNA motif (TCCTGCNA) and represses transcription by recruiting chromatin remodeling corepression machinery to target genes. Here we report structures of the Kaiso zinc finger DNA-binding domain in complex with its nonmethylated, sequence-specific DNA target (KBS) and with a symmetrically methylated DNA sequence derived from the promoter region of E-cadherin. Recognition of specific bases in the major groove of the core KBS and mCpG sites is accomplished through both classical and methyl CH···O hydrogen-bonding interactions with residues in the first two zinc fingers, whereas residues in the C-terminal extension following the third zinc finger bind in the opposing minor groove and are required for high-affinity binding. The C-terminal region is disordered in the free protein and adopts an ordered structure upon binding to DNA. The structures of these Kaiso complexes provide insights into the mechanism by which a zinc finger protein can recognize mCpG sites as well as a specific, nonmethylated regulatory DNA sequence.


Development ◽  
2011 ◽  
Vol 138 (21) ◽  
pp. 4649-4660 ◽  
Author(s):  
M. W. Pellegrino ◽  
S. Farooqui ◽  
E. Frohli ◽  
H. Rehrauer ◽  
S. Kaeser-Pebernard ◽  
...  

1998 ◽  
Vol 273 (43) ◽  
pp. 28229-28237 ◽  
Author(s):  
Nobukyuki Matsumoto ◽  
Friedrich Laub ◽  
Rafael Aldabe ◽  
Wen Zhang ◽  
Francesco Ramirez ◽  
...  

2018 ◽  
Author(s):  
F. Beurton ◽  
P. Stempor ◽  
M. Caron ◽  
A. Appert ◽  
Y. Dong ◽  
...  

AbstractThe CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Ly4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss depend on chromatin context, so it is important to understand the relationship between CFP1 and other chromatin factors. Using a proteomics approach, we identified an unexpected link betweenC. elegansCFP-1 and a Rpd3/Sin3 histone deacetylase complex. We find that mutants of CFP-1, SIN-3, and the catalytic subunit SET-2/SET1 have similar phenotypes and misregulate common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3 HDAC complex at promoters and uncover coordinate regulation of gene expression by chromatin complexes having distinct activities.


Sign in / Sign up

Export Citation Format

Share Document