scholarly journals The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

Development ◽  
2001 ◽  
Vol 128 (16) ◽  
pp. 3117-3131 ◽  
Author(s):  
Marina Simian ◽  
Yohei Hirai ◽  
Marc Navre ◽  
Zena Werb ◽  
Andre Lochter ◽  
...  

The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a crucial role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.

1998 ◽  
Vol 140 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Yohei Hirai ◽  
André Lochter ◽  
Sybille Galosy ◽  
Shogo Koshida ◽  
Shinichiro Niwa ◽  
...  

Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.


1995 ◽  
Vol 15 (6) ◽  
pp. 3398-3404 ◽  
Author(s):  
P Y Desprez ◽  
E Hara ◽  
M J Bissell ◽  
J Campisi

Cell proliferation and differentiation are precisely coordinated during the development and maturation of the mammary gland, and this balance invariably is disrupted during carcinogenesis. Little is known about the cell-specific transcription factors that regulate these processes in the mammary gland. The mouse mammary epithelial cell line SCp2 grows well under standard culture conditions but arrests growth, forms alveolus-like structures, and expresses beta-casein, a differentiation marker, 4 to 5 days after exposure to basement membrane and lactogenic hormones (differentiation signals). We show that this differentiation entails a marked decline in the expression of Id-1, a helix-loop-helix (HLH) protein that inactivates basic HLH transcription factors in other cell types. SCp2 cells stably transfected with an Id-1 expression vector grew more rapidly than control cells under standard conditions, but in response to differentiation signals, they arrested growth and formed three-dimensional structures similar to those of control cells. Id-1-expressing cells did not, however, express beta-casein. Moreover, 8 to 10 days after receiving differentiation signals, they lost three-dimensional organization, invaded the basement membrane, and then resumed growth. SCp2 cells expressing an Id-1 antisense vector grew more slowly than controls; in response to differentiation signals, they remained stably growth arrested and fully differentiated, as did control cells. We suggest that Id-1 renders cells refractory to differentiation signals and receptive to growth signals by inactivating one or more basic HLH proteins that coordinate growth and differentiation in the mammary epithelium.


1999 ◽  
Vol 162 (1) ◽  
pp. 21-29 ◽  
Author(s):  
P Vendeira ◽  
D Pignatelli ◽  
D Neves ◽  
MM Magalhaes ◽  
MC Magalhaes ◽  
...  

Adrenocortical regeneration after adrenal autotransplantation provides a model for the study of local autocrine/paracrine mechanisms involved in the growth and differentiation of the adrenal cortex. To study the possible involvement of some growth factors, namely basic fibroblast growth factor (bFGF, FGF-2) and insulin-like growth factor I (IGF-I), in cell differentiation, immunohistochemical and ultrastructural studies were carried out on adrenal autotransplants in adult male rats. To distinguish between fasciculata and glomerulosa-like cells with accuracy, tissue sections were immunostained with IZAb, which recognizes the inner zone antigen (IZAg) present in fasciculata and reticularis cells but absent from the glomerulosa, and by electron microscopy. IGF-I-treated animals exhibited a clear glomerulosa-like zone that was devoid of IZAb immunostaining. In this outer subcapsular area, ultrastructural examination showed cells containing mitochondria with irregular cristae resembling those of the fetal or immature glomerulosa cells. In contrast, no significant morphological differences were observed in bFGF-treated animals when compared with those from saline-treated controls, in both of which, IZAb immunostaining occurred in almost all adrenocortical cells, with no clear zonation or glomerulosa, as seen in the intact animal. Plasma aldosterone and corticosterone concentrations were lower in autotransplanted control animals than in intact controls, although plasma renin activities were similar. IGF-I treatment significantly increased aldosterone concentrations, whereas corticosterone and plasma renin activity were reduced. bFGF infusion further reduced plasma aldosterone, although plasma renin activity and corticosterone were unaffected. These results suggest that the two growth factors have different effects on zonal differentiation and function in the autotransplanted gland. In particular, bFGF, by reducing glomerulosa function, appears partly to replicate the actions of ACTH in normal animals. In contrast, IGF-I enhances the glomerulosa secreting phenotype and diminishes that of the fasciculata/reticularis, possibly replicating the actions of angiotensin II or a low sodium diet.


Sign in / Sign up

Export Citation Format

Share Document