scholarly journals Drosophila sperm development and intercellular cytoplasm sharing through ring canals do not require an intact fusome

Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev190140
Author(s):  
Ronit S. Kaufman ◽  
Kari L. Price ◽  
Katelynn M. Mannix ◽  
Kathleen M. Ayers ◽  
Andrew M. Hudson ◽  
...  

ABSTRACTAnimal germ cells communicate directly with each other during gametogenesis through intercellular bridges, often called ring canals (RCs), that form as a consequence of incomplete cytokinesis during cell division. Developing germ cells in Drosophila have an additional specialized organelle connecting the cells called the fusome. Ring canals and the fusome are required for fertility in Drosophila females, but little is known about their roles during spermatogenesis. With live imaging, we directly observe the intercellular movement of GFP and a subset of endogenous proteins through RCs during spermatogenesis, from two-cell diploid spermatogonia to clusters of 64 post-meiotic haploid spermatids, demonstrating that RCs are stable and open to intercellular traffic throughout spermatogenesis. Disruption of the fusome, a large cytoplasmic structure that extends through RCs and is important during oogenesis, had no effect on spermatogenesis or male fertility under normal conditions. Our results reveal that male germline RCs allow the sharing of cytoplasmic information that might play a role in quality control surveillance during sperm development.

2019 ◽  
Author(s):  
Ronit S. Kaufman ◽  
Kari L. Price ◽  
Katelynn M. Mannix ◽  
Kathleen Ayers ◽  
Andrew M. Hudson ◽  
...  

AbstractIntercellular bridges, also called ring canals (RCs), connect germline cells during gametogenesis in males and females. They form as a consequence of incomplete cytokinesis during cell division leaving groups of daughter cells connected in syncytia. InDrosophilafemales, RCs are required for oocyte growth but little is known about the role of RCs during spermatogenesis. Using live imaging, we document extensive intercellular movement of GFP and a subset of endogenous proteins through RCs during spermatogenesis from two-cell diploid spermatogonia to clusters of 64 post-meiotic haploid spermatids. Loss of the fusome, a large cytoplasmic structure extending through RCs that is known to be important during oogenesis, has minimal impact on RC development or intercellular protein movement during spermatogenesis. Our results reveal that male germline RCs remain persistently open and mediate extensive sharing of cytoplasmic information, supporting multiple roles for RCs throughout sperm development.


2020 ◽  
Author(s):  
Peiwei Chen ◽  
Yicheng Luo ◽  
Alexei A. Aravin

SUMMARYpiRNAs are small non-coding RNAs that guide the silencing of transposons and other targets in animal gonads. In Drosophila female germline, many piRNA source loci dubbed ‘piRNA clusters’ lack hallmarks of active genes and exploit an alternative path for transcription, which relies on the Rhino-Deadlock-Cutoff (RDC) complex. It remains to date unknown how piRNA cluster transcription is regulated in the male germline. We found that components of RDC complex are expressed in male germ cells during early spermatogenesis, from germline stem cells (GSCs) to early spermatocytes. RDC is essential for expression of dual-strand piRNA clusters and transposon silencing in testis; however, it is dispensable for expression of Y-linked Suppressor of Stellate piRNAs and therefore Stellate silencing. Despite intact Stellate repression, rhi mutant males exhibited compromised fertility accompanied by germline DNA damage and GSC loss. Thus, piRNA-guided repression is essential for normal spermatogenesis beyond Stellate silencing. While RDC associates with multiple piRNA clusters in GSCs and early spermatogonia, its localization changes in later stages as RDC concentrates on a single X-linked locus, AT-chX. Dynamic RDC localization is paralleled by changes in piRNA cluster expression, indicating that RDC executes a fluid piRNA program during different stages of spermatogenesis.


Author(s):  
J. R. Ruby ◽  
R. F. Dyer ◽  
R. G. Skalko ◽  
R. F. Gasser ◽  
E. P. Volpe

An electron microscope examination of fetal ovaries has revealed that developing germ cells are connected by intercellular bridges. In this investigation several species have been studied including human, mouse, chicken, and tadpole (Rana pipiens). These studies demonstrate that intercellular connections are similar in morphology regardless of the species.Basically, all bridges are characterized by a band of electron-dense material on the cytoplasmic side of the tri-laminar membrane surrounding the connection (Fig.l). This membrane is continuous with the plasma membrane of the conjoined cells. The dense material, however, never extends beyond the limits of the bridge. Variations in the configuration of intercellular connections were noted in all ovaries studied. However, the bridges in each individual species usually exhibits one structural characteristic seldom found in the others. For example, bridges in the human ovary very often have large blebs projecting from the lateral borders whereas the sides of the connections in the mouse gonad merely demonstrate a slight convexity.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Xiaochun Chi ◽  
Weiwei Luo ◽  
Jiagui Song ◽  
Bing Li ◽  
Tiantian Su ◽  
...  

AbstractKindlin-2 is known to play important roles in the development of mesoderm-derived tissues including myocardium, smooth muscle, cartilage and blood vessels. However, nothing is known for the role of Kindlin-2 in mesoderm-derived reproductive organs. Here, we report that loss of Kindlin-2 in Sertoli cells caused severe testis hypoplasia, abnormal germ cell development and complete infertility in male mice. Functionally, loss of Kindlin-2 inhibits proliferation, increases apoptosis, impairs phagocytosis in Sertoli cells and destroyed the integration of blood-testis barrier structure in testes. Mechanistically, Kindlin-2 interacts with LATS1 and YAP, the key components of Hippo pathway. Kindlin-2 impedes LATS1 interaction with YAP, and depletion of Kindlin-2 enhances LATS1 interaction with YAP, increases YAP phosphorylation and decreases its nuclear translocation. For clinical relevance, lower Kindlin-2 expression and decreased nucleus localization of YAP was found in SCOS patients. Collectively, we demonstrated that Kindlin-2 in Sertoli cells is essential for sperm development and male reproduction.


2017 ◽  
Author(s):  
Brock Roberts ◽  
Amanda Haupt ◽  
Andrew Tucker ◽  
Tanya Grancharova ◽  
Joy Arakaki ◽  
...  

AbstractWe present a CRISPR/Cas9 genome editing strategy to systematically tag endogenous proteins with fluorescent tags in human inducible pluripotent stem cells. To date we have generated multiple human iPSC lines with GFP tags for 10 proteins representing key cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, lamin B1, non-muscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome editing methodology using Cas9 ribonuclear protein electroporation and fluorescence-based enrichment of edited cells resulted in <0.1-24% HDR across all experiments. Clones were generated from each edited population and screened for precise editing. ∼25% of the clones contained precise mono-allelic edits at the targeted locus. Furthermore, 92% (36/39) of expanded clonal lines satisfied key quality control criteria including genomic stability, appropriate expression and localization of the tagged protein, and pluripotency. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. The data described here, including our editing protocol, genetic screening, quality control assays, and imaging observations, can serve as an initial resource for genome editing in cell biology and stem cell research.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 947-956 ◽  
Author(s):  
H. Lin ◽  
L. Yue ◽  
A.C. Spradling

Oogenesis in Drosophila takes place within germline cysts that support polarized transport through ring canals interconnecting their 15 nurse cells and single oocyte. Developing cystocytes are spanned by a large cytoplasmic structure known as the fusome that has been postulated to help form ring canals and determine the pattern of nurse cell-oocyte interconnections. We identified the adducin-like hts product and alpha-spectrin as molecular components of fusomes, discovered a related structure in germline stem cells and documented regular associations between fusomes and cystocyte centrosomes. hts mutations completely eliminated fusomes, causing abnormal cysts containing a reduced number of cells to form. Our results imply that Drosophila fusomes are required for ovarian cyst formation and suggest that membrane skeletal proteins regulate cystocyte divisions.


2013 ◽  
Vol 25 (1) ◽  
pp. 272
Author(s):  
P. Ramos-Ibeas ◽  
E. Pericuesta ◽  
R. Fernandez-Gonzalez ◽  
M. A. Ramirez ◽  
A. Gutierrez-Adan

Successful mammalian fertilization requires gametes with an intact structure and functionality. Although it is well known that epididymal functions are sperm maturation, sustenance, transport, and storage, there is controversial information about its role in sperm quality control, and it has been suggested that some regions of the rat epididymis are able to phagocytize germ cells. Our objective was to analyse whether different segments of the mouse epididymal epithelium act as a selection barrier for abnormal spermatogenic cells by removing immature cells from the lumen by phagocytosis. To detect the presence of immature germ cells along the epididymis, transgenic mice expressing enhanced green fluorescent protein under a Deleted in Azoospermia-Like (mDazl) promoter were generated. The transgenic animals express specifically enhanced green fluorescent protein in spermatogonias, spermatocytes, and spermatids; thus, immature spermatogenic cells can be easily identified by fluorescence microscopy. Colchicine, a microtubule disruptor that leads to severe alterations in the architecture of the seminiferous tubules, was administered in the rete testis to induce the release of immature germ cells into the epididymis. Mice were killed daily, from Day 1 to 8 post-administration, and epididymides were collected and observed under a fluorescence stereoscope to determine the transit of immature germ cells along the epididymis. Epididymides from control mice without colchicine administration were also collected. Fluorescent immature germ cells were present in the caput epididymis 24 h after colchicine administration, and they progressed through the corpus and cauda, leaving the epididymis 7 days after colchicine administration. After fluorescence observation, epididymides were fixed, sectioned, and stained with hematoxylin solution. Immature germ cells and phagosomes were not observed in control epididymides. By contrast, the presence of phagosomes in the principal cells of the epididymal epithelium containing immature germ cells in different degrees of degradation was observed by light microscopy in mice injected with colchicine. Phagocytosis was observed along the epididymis following the main wave of fluorescent immature cells. Thus, when immature cells had reached the corpus epididymis, phagocytosis was detected in several segments of the caput epididymis. Later, once the immature cells had arrived to the cauda epididymis or had abandoned the epididymis, phagocytosis was observed in the corpus and cauda epididymis. The presence of phagosomes was observed in all epididymal tubules within a phagocytosis area. In conclusion, we demonstrated that the epididymal epithelium is engaged in sperm quality control by clearing immature germ cells after a massive shedding into the epididymal lumen, and that this phenomenon is not restricted to a specific segment of the epididymis.


2005 ◽  
Vol 17 (9) ◽  
pp. 99
Author(s):  
L. M. Cotton ◽  
G. M. Gibbs ◽  
D. M. De Kretser ◽  
M. K. O'Bryan

Male infertility is often a result of irregular sperm development/function. The identification of snt-2 (Suc-1 associated Neurotrophic Factor Target 2) and Fgfr-1 to the sperm tail, lead to the hypothesis that Fgf signalling through snt-2 is involved in sperm tail development/function. To test this hypothesis, transgenic mice carrying a dominant-negative variant of Fgfr-1, driven by the protamine 1 promoter (haploid specific) were created. Breeding experiments confirmed male fertility; however, one line was significantly sub-fertile and demonstrated a significantly reduced daily sperm production (DSP, 30%↓). Transgene expression levels were up to 70 times above native mRNA levels in wt mice; however, there was a concurrent upregulation of the native receptor in transgenic mice, resulting in only a 6× over-expression in transgenic:native mRNA. To increase transgene expression, independent lines were crossed (double heterozygous, DH). DH transgene expression levels were up to 120 times above the native mRNA in wild type mice, resulting in a 20× over-expression in transgenic:native mRNA. Breeding experiments showed males from 1 cross were significantly subfertile with DSPs further reduced (41%↓). Collectively this data shows Fgfr-1 signalling is required for quantitatively normal spermiogenesis. Given the millions of sperm that mice produce, a 40%↓ in DSP is unlikely to be responsible for the sub-fertility observed i.e. 2 v. 9 pups/litter. Therefore, a disruption of Fgfr-1 signalling may also induce a post-testicular phenotype. Western blot analysis, using tyrosine phosphorylation as a surrogate marker of sperm capacitation, showed transgenic mice had a significantly attenuated ability to initiate capacitation. As capacitation is an absolute requirement for fertilisation, the absence of capacitating capability is probably the major contributor to the sub-fertility seen in the transgenic mice. This research demonstrates for the first time that the Fgfr-1 signalling cascade is one of several pathways associated with sperm development and function.


2020 ◽  
Vol 16 (5) ◽  
pp. 20200137
Author(s):  
Katherine J. Eastin ◽  
Austin P. Huang ◽  
Patrick M. Ferree

Egg development is a defining process of reproduction in higher eukaryotes. In the fruit fly, Drosophila melanogaster , this process begins with four mitotic divisions starting from a single germ cell, producing a cyst of 16 cystocytes; one of these cells will become the oocyte and the others supporting nurse cells. These mitotic divisions are exceptional because cytokinesis is incomplete, resulting in the formation of cytoplasmic bridges known as ring canals that interconnect the cystocytes. This organization allows all cystocytes to divide synchronously during each mitotic round, resulting in a final, power-of-2 number of germ cells. Given that numerous insects obey this power-of-2 rule, we investigated if strict cell doubling is a universal, underlying cause. Using confocal microscopy, we found striking departures from this paradigm in three different power-of-2 insects belonging to the Apocrita suborder (ants, bees and wasps). In these insects, the earliest-formed cystocytes cease to divide during the latter mitotic cycles while their descendants undergo further division, thereby producing a ‘radial’ direction of division activity. Such cystocyte division patterns that depart from strict cell doubling may be ‘fine-tuned’ in order to maintain a final, power-of-2 germ cell number.


2010 ◽  
Vol 30 (9) ◽  
pp. 2280-2292 ◽  
Author(s):  
Tokuko Iwamori ◽  
Naoki Iwamori ◽  
Lang Ma ◽  
Mark A. Edson ◽  
Michael P. Greenbaum ◽  
...  

ABSTRACT In somatic cells, abscission, the physical separation of daughter cells at the completion of cytokinesis, requires CEP55, ALIX, and TSG101. In contrast, cytokinesis is arrested prior to abscission in differentiating male germ cells that are interconnected by TEX14-positive intercellular bridges. We have previously shown that targeted deletion of TEX14 disrupts intercellular bridges in all germ cells and causes male sterility. Although these findings demonstrate that intercellular bridges are essential for spermatogenesis, it remains to be shown how TEX14 and other proteins come together to prevent abscission and form stable intercellular bridges. Using a biochemical enrichment of male germ cell intercellular bridges, we identified additional bridge proteins, including CEP55. Although CEP55 is highly expressed in testes at the RNA level, there is no report of the presence of CEP55 in germ cells. We show here that CEP55 becomes a stable component of the intercellular bridge and that an evolutionarily conserved GPPX3Y motif of TEX14 binds strongly to CEP55 to block similar GPPX3Y motifs of ALIX and TSG101 from interacting and localizing to the midbody. Thus, TEX14 prevents the completion of cytokinesis by altering the destiny of CEP55 from a nidus for abscission to an integral component of the intercellular bridge.


Sign in / Sign up

Export Citation Format

Share Document