Tissue interactions in embryonic mouse tooth germs
The ability of fragments of incisor enamel organ and lip-furrow epithelium from 15- and 16-day old embryonic mice to regulate into harmonious tooth constructions is described. The cervical loop and upper half portions of the incisor enamel organ were confronted with incisor or molar dental papillae. Similar combinations were made from lip-furrow epithelium and incisor or molar papillae. The cultures were grown in the anterior chambers of homologous host eyes. The epithelial fragments from the incisor enamel organ when associated with the dental papillae reconstruct teeth typical in all respects; enamel and dentin matrices are deposited. Lip-furrow epithelium arises from the oral epithelium and is temporally and spatially related to the incisor dental epithelium proper. This ectopic epithelium was confronted by incisor and molar papillae. Harmonious teeth developed in these explants. It is concluded that the ability of the dental papillae to elicit new cytodifferentiative and biochemical syntheses from the lip-furrow epithelium indicates that the dental papillae act inductively during tooth ontogeny. The shape of the teeth reconstructed from enamel organ fragments and lip-furrow epithelium were incisiform or molariform in response to the incisor or molar dental papillae. These data confirm the conclusion that the structural specificity for tooth shape resides in the dental papilla.