Tissue interactions in embryonic mouse tooth germs

Development ◽  
1970 ◽  
Vol 24 (1) ◽  
pp. 159-171
Author(s):  
Edward J. Kollar ◽  
Grace R. Baird

The ability of fragments of incisor enamel organ and lip-furrow epithelium from 15- and 16-day old embryonic mice to regulate into harmonious tooth constructions is described. The cervical loop and upper half portions of the incisor enamel organ were confronted with incisor or molar dental papillae. Similar combinations were made from lip-furrow epithelium and incisor or molar papillae. The cultures were grown in the anterior chambers of homologous host eyes. The epithelial fragments from the incisor enamel organ when associated with the dental papillae reconstruct teeth typical in all respects; enamel and dentin matrices are deposited. Lip-furrow epithelium arises from the oral epithelium and is temporally and spatially related to the incisor dental epithelium proper. This ectopic epithelium was confronted by incisor and molar papillae. Harmonious teeth developed in these explants. It is concluded that the ability of the dental papillae to elicit new cytodifferentiative and biochemical syntheses from the lip-furrow epithelium indicates that the dental papillae act inductively during tooth ontogeny. The shape of the teeth reconstructed from enamel organ fragments and lip-furrow epithelium were incisiform or molariform in response to the incisor or molar dental papillae. These data confirm the conclusion that the structural specificity for tooth shape resides in the dental papilla.

Development ◽  
1969 ◽  
Vol 21 (1) ◽  
pp. 131-148
Author(s):  
Edward J. Kollar ◽  
Grace R. Baird

Studies of epithelio-mesenchymal interactions during embryonic organogenesis have led to a number of conclusions regarding the nature of cellular and tissue differentiation (McLoughlin, 1963; Grobstein, 1967). For example, the importance of both the epithelium and the mesenchyme and the dependence of some systems on a limited number of specific mesenchymal tissues have been pointed out (Hilfer, 1968). Intimately connected with the analysis of the factors that elicit differentiation during such interactions is the question of structural specificity of the differentiated structure. Is the directive for the final form of the structure resident in the epithelium, in the mesoderm, or in both? Can a seemingly stable epithelium undergo transformation to a more labile state and respond to a new interaction with the result that a new epithelial structure is formed (Billingham & Silvers, 1963, 1968)?


Development ◽  
1970 ◽  
Vol 24 (1) ◽  
pp. 173-186
Author(s):  
Edward J. Kollar ◽  
Grace R. Baird

The response of embryonic mouse dental epithelium and mesoderm to tissues of ectopic origin was examined. Isolated molar or incisor mesoderm was confronted with epithelium isolated from the plantar surface of the embryonic mouse foot plate or from the snout. Harmoniously structured teeth were formed from the foot epithelium and incisor or molar mesoderm. These data are interpreted as an unequivocal demonstration of the inductive role of the dental mesenchyme. Teeth were absent in confrontations of dental mesenchyme and snout epithelium. The presence of hair follicles in these explants is described and discussed with reference to other integumental epithelio-mesenchymal interactions. Dental epithelium forms keratinizing surface-like epithelium and invading bands of epithelium in association with foot mesoderm; definitive structures are not formed. On the other hand, when incisor or molar epithelium is associated with snout mesoderm, hair follicles are seen in addition to keratinizing surface-like epithelial configurations. The roles of the epithelial and mesenchymal tissues and the nature of epithelio-mesenchymal interactions in the developing mouse integument are discussed.


Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 461-470 ◽  
Author(s):  
A.K. Jowett ◽  
S. Vainio ◽  
M.W. Ferguson ◽  
P.T. Sharpe ◽  
I. Thesleff

Duplication of the msh-like homeobox gene of Drosophila may be related to the evolution of the vertebrate head. The murine homologues of this gene, msx 1 and msx 2 are expressed in the developing craniofacial complex including the branchial arches, especially in regions of epithelial-mesenchymal organogenesis including the developing tooth. By performing in vitro recombination experiments using homochronic dental and non-dental epithelial and mesenchymal tissues from E10 to E18 mouse embryos, we have found that the maintenance of homeobox gene expression in the tooth is dependent upon tissue interactions. In homotypic recombinants, dental-type tissue interactions occur, leading to expression of both genes in a manner similar to that seen during in vivo development. msx 1 is expressed exclusively in mesenchyme, both in the dental papilla and follicle. msx 2 is expressed in the dental epithelium and only in the mesenchyme of the dental papilla. In heterotypic recombinants, the dental epithelium is able to induce msx 1 expression in non-dental mesenchyme, this potential being lost at the bell stage. In these recombinants msx 2 was induced by presumptive dental epithelium prior to the bud stage but not thereafter. The expression of msx 1 and msx 2 in dental mesenchyme requires the presence of epithelium until the early bell stage. However, whereas non-dental, oral epithelium is capable of maintaining expression of msx 1 in dental mesenchyme throughout tooth development, induction of msx 2 was temporally restricted suggesting regulation by a specific epithelial-mesenchymal interaction related to the inductive events of tooth formation. msx 1 and msx 2, as putative transcription factors, may play a role in regulating the expression of other genes during tooth formation. We conclude that expression of msx 1 in jaw mesenchyme requires a non-specific epithelial signal, whereas msx 2 expression in either epithelium or mesenchyme requires reciprocal interactions between specialized dental cell populations.


1875 ◽  
Vol 165 ◽  
pp. 285-296 ◽  

The researches of Goodsir, constituting as they did a very material advance in knowledge, became so deeply graven upon the minds of scientific men that subsequent investigations, tending to modify his conclusions in important particulars, have attracted less attention than is their due. As long ago as 1853 Professor Huxley (Quart. Journ. Microscop. Science, vol. i.) published the statement that, in the frog and mackerel at all events, the tooth-germs are at no time in the condition of free papillæ; and in the same paper correctly described the connexion existing between the oral epithelium and the enamel-organ in the fully formed dental sacs. Thus, although Professor Huxley accepted as in most particulars accurate the account given by Goodsir of the sequence of events in the formation of the human tooth-sac, he in some degree anticipated the discovery made by Professor Kölliker some years later (Zeitschrift f. wiss. Zool. 1863), that in several Mammalia the tooth-germs never pass through any papillary stage, but are from the first deep below the surface.


2021 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Yusuke Makino ◽  
Kaoru Fujikawa ◽  
Miwako Matsuki-Fukushima ◽  
Satoshi Inoue ◽  
Masanori Nakamura

Tooth eruption is characterized by a coordinated complex cascade of cellular and molecular events that promote tooth movement through the eruptive pathway. During tooth eruption, the stratum intermedium structurally changes to the papillary layer with tooth organ development. We previously reported intercellular adhesion molecule-1 (ICAM-1) expression on the papillary layer, which is the origin of the ICAM-1-positive junctional epithelium. ICAM-1 expression is induced by proinflammatory cytokines, including interleukin-1 and tumor necrosis factor. Inflammatory reactions induce tissue degradation. Therefore, this study aimed to examine whether inflammatory reactions are involved in tooth eruption. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed sequential expression of hypoxia-induced factor-1α, interleukin-1β, and chemotactic factors, including keratinocyte-derived chemokine (KC) and macrophage inflammatory protein-2 (MIP-2), during tooth eruption. Consistent with the RT-PCR results, immunohistochemical analysis revealed KC and MIP-2 expression in the papillary layer cells of the enamel organ from the ameloblast maturation stage. Moreover, there was massive macrophage and neutrophil infiltration in the connective tissue between the tooth organ and oral epithelium during tooth eruption. These findings suggest that inflammatory reactions might be involved in the degradation of tissue overlying the tooth organ. Further, these reactions might be induced by hypoxia in the tissue overlying the tooth organ, which results from decreased capillaries in the tissue. Our findings indicate that bacterial infections are not associated with the eruption process. Therefore, tooth eruption might be regulated by innate inflammatory mechanisms.


2004 ◽  
Vol 83 (3) ◽  
pp. 241-244 ◽  
Author(s):  
A. Ohazama ◽  
J.-M. Courtney ◽  
P.T. Sharpe

Osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), and RANK ligand (RANKL) are mediators of various cellular interactions, including bone metabolism. We analyzed expression of these three genes during murine odontogenesis from epithelial thickening to cytodifferentiation stages. Opg showed expression in the thickening and bud epithelium. Expression of Opg and Rank was observed in both the internal and the external enamel epithelium as well as in the dental papilla mesenchyme. Although Rankl expression was not detected in tooth epithelium or mesenchyme, it was expressed in pre-osteogenic mesenchymal cells close to developing tooth germs. All three genes were detected in developing dentary bone at P0. The addition of exogenous OPG to explant cultures of tooth primordia produced a delay in tooth development that resulted in reduced mineralization. We propose that the spatiotemporal expression of these molecules in early tooth and bone primordia cells has a role in co-ordinating bone and tooth development.


2009 ◽  
Vol 20 (5) ◽  
pp. 365-369 ◽  
Author(s):  
Elizabeth Ferreira Martinez ◽  
Luciana Alves Herdy da Silva ◽  
Cristiane Furuse ◽  
Ney Soares de Araújo ◽  
Vera Cavalcanti de Araújo

Dentin matrix protein 1 (DMP1) is an acidic phosphoprotein that plays an important role in mineralized tissue formation by initiation of nucleation and modulation of mineral phase morphology. The purpose of the present study was to examine the immunoexpression of DMP1 in tooth germs of 7 human fetuses at different gestational ages (14, 16, 19, 20, 21, 23 and 24 weeks) comparing with completed tooth formation erupted teeth. The results showed the presence of DMP1 in the dental lamina, as well as in the cells of the external epithelium, stellate reticulum and stratum intermedium of the enamel organ. However, in the internal dental epithelium, cervical loop region and dental papilla some cells have not labeled for DMP1. In the crown stage, DMP1 was expressed in the ameloblast and odontoblast layer, as well as in the dentinal tubules of coronal dentin near the odontoblast area. Erupted teeth with complete tooth formation exhibited immunolabeling for DMP1 only in the dentinal tubules mainly close to the dental pulp. No staining was observed in the enamel, predentin or dental pulp matrix. DMP1 is present in all developing dental structures (dental lamina, enamel organ, dental papilla) presenting few immunoexpression variations, with no staining in mineralized enamel and dentin.


Development ◽  
1980 ◽  
Vol 58 (1) ◽  
pp. 251-264
Author(s):  
Brian K. Hall

Mandibular processes from 9- to 13-day-old embryonic mice formed both bone and cartilage when grafted to the chorioallantoic membranes of host embryonic chicks. Isolated ectomesenchyme, taken from 9-day-old embryos did not form bone or cartilage, while older ectomesenchyme formed both. Recombination of the epithelial and ectomesenchymal components confirmed that the presence of the epithelium was a sufficient stimulus for the initiation of both chondro- and osteogenesis. Recombinations between components of mouse and chick mandibular processes showed that 9-day-old mouse ectomesenchyme could respond to chick epithelium but that, although older murine epithelia could initiate osteogenesis from the avian ectomesenchyme, epithelia from 9-day-old embryos could not. These results indicated that an epithelial-ectomesenchymal interaction was responsible for the initiation of both osteo- and chondrogenesis within the mandibular arch of the mouse; that the interaction began at 10 days of gestation; that the ectomesenchyme was capable of responding at 9 days, but that the epithelium did not acquire its ability to act on the ectomesenchyme until 10 days of gestation.


2004 ◽  
Vol 167 (5) ◽  
pp. 973-983 ◽  
Author(s):  
Satoshi Fukumoto ◽  
Takayoshi Kiba ◽  
Bradford Hall ◽  
Noriyuki Iehara ◽  
Takashi Nakamura ◽  
...  

Tooth morphogenesis results from reciprocal interactions between oral epithelium and ectomesenchyme culminating in the formation of mineralized tissues, enamel, and dentin. During this process, epithelial cells differentiate into enamel-secreting ameloblasts. Ameloblastin, an enamel matrix protein, is expressed by differentiating ameloblasts. Here, we report the creation of ameloblastin-null mice, which developed severe enamel hypoplasia. In mutant tooth, the dental epithelium differentiated into enamel-secreting ameloblasts, but the cells were detached from the matrix and subsequently lost cell polarity, resumed proliferation, and formed multicell layers. Expression of Msx2, p27, and p75 were deregulated in mutant ameloblasts, the phenotypes of which were reversed to undifferentiated epithelium. We found that recombinant ameloblastin adhered specifically to ameloblasts and inhibited cell proliferation. The mutant mice developed an odontogenic tumor of dental epithelium origin. Thus, ameloblastin is a cell adhesion molecule essential for amelogenesis, and it plays a role in maintaining the differentiation state of secretory stage ameloblasts by binding to ameloblasts and inhibiting proliferation.


Sign in / Sign up

Export Citation Format

Share Document