Cell adhesion and chondrogenesis in brachypod mouse limb mesenchyme: fragment fusion studies

Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 161-168
Author(s):  
Jackie Duke ◽  
William A. Elmer

This study is a continuing investigation of the effect of the brachypod mouse mutation on cell interactions and chondrogenesis during early limb development. In this report, cell adhesiveness was assessed in fused fragments of brachypod and normal limb-bud mesenchyme. Examination of the interface of fused distal postaxial limb fragments show brachypod limb mesenchyme to be more adhesive than normal limb mesenchyme. Chondrogenesis within brachypod fragments is delayed and less extensive than in normal fragments. In addition, chondrogenesis within normal fragments is not affected by the juxtaposition of thebrachypod fragment, and vice versa.

Development ◽  
1994 ◽  
Vol 120 (11) ◽  
pp. 3339-3353 ◽  
Author(s):  
D.T. Chang ◽  
A. Lopez ◽  
D.P. von Kessler ◽  
C. Chiang ◽  
B.K. Simandl ◽  
...  

The hedgehog (hh) segmentation gene of Drosophila melanogaster encodes a secreted signaling protein that functions in the patterning of larval and adult structures. Using low stringency hybridization and degenerate PCR primers, we have isolated complete or partial hh-like sequences from a range of invertebrate species including other insects, leech and sea urchin. We have also isolated three mouse and two human DNA fragments encoding distinct hh-like sequences. Our studies have focused upon Hhg-1, a mouse gene encoding a protein with 46% amino acid identity to hh. The Hhg-1 gene, which corresponds to the previously described vhh-1 or sonic class, is expressed in the notochord, ventral neural tube, lung bud, hindgut and posterior margin of the limb bud in developing mouse embryos. By segregation analysis the Hhg-1 gene has been localized to a region in proximal chromosome 5, where two mutations affecting mouse limb development previously have been mapped. In Drosophila embryos, ubiquitous expression of the Hhg-1 gene yields effects upon gene expression and cuticle pattern similar to those observed for the Drosophila hh gene. We also find that cultured quail cells transfected with a Hhg-1 expression construct can induce digit duplications when grafted to anterior or mid-distal but not posterior borders within the developing chick limb; more proximal limb element duplications are induced exclusively by mid-distal grafts. Both in transgenic Drosophila embryos and in transfected quail cells, the Hhg-1 protein product is cleaved to yield two stable fragments from a single larger precursor. The significance of Hhg-1 genetic linkage, patterning activity and proteolytic processing in Drosophila and chick embryos is discussed.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4729-4736
Author(s):  
L. Lettice ◽  
J. Hecksher-Sorensen ◽  
R.E. Hill

Epithelial-mesenchymal interactions are essential for both limb outgrowth and pattern formation in the limb. Molecules capable of communication between these two tissues are known and include the signaling molecules SHH and FGF4, FGF8 and FGF10. Evidence suggests that the pattern and maintenance of expression of these genes are dependent on a number of factors including regulatory loops between genes expressed in the AER and those in the underlying mesenchyme. We show here that the mouse mutation dominant hemimelia (Dh) alters the pattern of gene expression in the AER such that Fgf4, which is normally expressed in a posterior domain, and Fgf8, which is expressed throughout are expressed in anterior patterns. We show that maintenance of Shh expression in the posterior mesenchyme is not dependent on either expression of Fgf4 or normal levels of Fgf8 in the overlying AER. Conversely, AER expression of Fgf4 is not directly dependent on Shh expression. Also the reciprocal regulatory loop proposed for Fgf8 in the AER and Fgf10 in the underlying mesenchyme is also uncoupled by this mutation. Early during the process of limb initiation, Dh is involved in regulating the width of the limb bud, the mutation resulting in selective loss of anterior mesenchyme. The Dh gene functions in the initial stages of limb development and we suggest that these initial roles are linked to mechanisms that pattern gene expression in the AER.


2020 ◽  
Vol 8 (4) ◽  
pp. 31
Author(s):  
Ines Desanlis ◽  
Rachel Paul ◽  
Marie Kmita

Limb patterning relies in large part on the function of the Hox family of developmental genes. While the differential expression of Hox genes shifts from the anterior–posterior (A–P) to the proximal–distal (P–D) axis around embryonic day 11 (E11), whether this shift coincides with a more global change of A–P to P–D patterning program remains unclear. By performing and analyzing the transcriptome of the developing limb bud from E10.5 to E12.5, at single-cell resolution, we have uncovered transcriptional trajectories that revealed a general switch from A–P to P–D genetic program between E10.5 and E11.5. Interestingly, all the transcriptional trajectories at E10.5 end with cells expressing either proximal or distal markers suggesting a progressive acquisition of P–D identity. Moreover, we identified three categories of genes expressed in the distal limb mesenchyme characterized by distinct temporal expression dynamics. Among these are Hoxa13 and Hoxd13 (Hox13 hereafter), which start to be expressed around E10.5, and importantly the binding of the HOX13 factors was observed within or in the neighborhood of several of the distal limb genes. Our data are consistent with previous evidence suggesting that the transition from the early/proximal to the late/distal transcriptome of the limb mesenchyme largely relies on HOX13 function. Based on these results and the evidence that HOX13 factors restrict Hoxa11 expression to the proximal limb, in progenitor cells of the zeugopod, we propose that HOX13 act as a key determinant of P–D patterning.


Development ◽  
1977 ◽  
Vol 42 (1) ◽  
pp. 209-217
Author(s):  
Jackie Duke ◽  
William A. Elmer

Twelve-day normal and brachypod mouse limb mesenchyme was studied in rotation culture. Over a 3½ h period the rate of decline of single cells was significantly greater in mutant than in normal cultures, probably because the brachypod cells were more adhesive. However, the final size of the aggregates and their cell densities were the same by 24 h of incubation. On the other hand their pattern of chondrogenesis was different. Normal aggregates contained condensations with typical histotypic cartilage by 24 h of incubation, and were entirely chondrifled by 4 days in culture. The condensations in brachypod aggregates were fewer, smaller, and delayed in their chondrogenesis. Never more than 50% of the brachypod aggregate exhibited chondrogenesis. The importance of cell contact and cell density to the chondrogenic process are discussed.


Development ◽  
1975 ◽  
Vol 33 (2) ◽  
pp. 355-370
Author(s):  
R. M. Greene ◽  
D. M. Kochhar

The glutamine analogue, 6-diazo-5-oxo-L-norleucine (DON), has been shown to inhibit biosynthesis of purines and glycosaminoglycans, presumably by blocking the glutaminedependent steps in the biosynthetic pathways. The teratogenic potential of DON on the developing mouse limb-bud in vivo and in vitro was studied in an attempt to discriminate whether DON is exerting its teratogenic effect by interfering with glycosaminoglycan orpurine metabolism. A single intramuscular injection of DON (0·5 mg/kg) to ICR/DUB mice on day 10 of gestation resulted in 76% resorption, while fetuses surviving to day 17 exhibited growth retardation, median cleft lip, and limb malformations. Concurrent administration of Lglutamine (250 mg/kg) provided no protection against resorption or malformations, while 5-aminoimidazolecarboxamide (AIC, 250 mg/kg) decreased the resorption rate to 34% without significantly altering the incidence of malformations. Injection of DON alone on day 11 resulted in 87% of fetuses exhibiting limb malformations, with only 2% resorption. Concurrent injection of AIC decreased the frequency of limb malformations to 32%. L-Glutamine, D-glucosamine, or inosinic acid were without any protective effect in vivo. DON (5 μg/ml medium) added in vitro to organ cultures of day 11 mouse limb-buds caused all limbs to evidence cartilage abnormalities. In this system, either L-glutamine or D-glucosamine (0·5 mg/ml medium) provided protection against DON effects while AIC (0·5 mg/ml medium) offered no protection in vitro. These data suggest that DON exerts its effects in vivo by interfering with purine metabolism while in vitro its teratogenic action may be interruption of glycosaminoglycan biosynthesis. This may reflect upon the relative importance of growth and differentiation to limb development in vivo and in vitro. These data infer that limb development in vitro relies more on the differentiative process (differentiation of cartilage) than on growth, whereas limb development in vivo is dependent, at this stage, to a greater extent on growth for normal phenotypic expression.


1995 ◽  
Vol 130 (4) ◽  
pp. 997-1003 ◽  
Author(s):  
T Ochiya ◽  
H Sakamoto ◽  
M Tsukamoto ◽  
T Sugimura ◽  
M Terada

The initiation of limb development depends on the site specific proliferation of the mesenchyme by the signals from the apical ectodermal ridge (AER) in embryonic mouse. We have previously reported that the local expression of Hst-1/Fgf-4 transcripts in AER of the mouse limb bud is developmentally regulated, expressed at 11 and 12 days post coitus (p.c.) embryo. In an effort to further understand the role of Hst-1/FGF-4 in mouse limb development, an antisense oligodeoxynucleotides (ODNs) study was performed. We first established a novel organ culture system to study mouse limb development in vitro. This system allows mouse limb bud at 9.5-10-d p.c. embryo, when placed on a sheet of extracellular matrix in a defined medium, to differentiate into a limb at 12.5-d p.c. embryo within 4.5 d. Using this organ culture system, we have shown that exposure of 9.5-10-d p.c. embryonal limb bud explants to antisense ODNs of Hst-1/FGF-4 blocks limb development. In contrast, sense and scrambled ODNs have no inhibitory effect on limb outgrowth, suggesting that Hst-1/FGF-4 may work as a potent inducing factor for mouse limb development.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 181-186
Author(s):  
Bruce A. Morgan ◽  
Cliff Tabin

In recent years, molecular analysis has led to the identification of some of the key genes that control the morphogenesis of the developing embryo. Detailed functional analysis of these genes is rapidly leading to a new level of understanding of how embryonic form is regulated. Understanding the roles that these genes play in development can additionally provide insights into the evolution of morphology. The 5′ genes of the vertebrate Hox clusters are expressed in complex patterns during limb morphogenesis. Various models suggest that the Hoxd genes specify positional identity along the anteroposterior (A-P) axis of the limb. Close examination of the pattern of Hoxd gene expression in the limb suggests that a distinct combination of Hoxd gene expressed in different digit primordia is unlikely to specify each digit independently. The effects of altering the pattern of expression of the Hoxd-11 gene at different times during limb development indicate that the Hoxd genes have separable early and late roles in limb morphogenesis. In their early role, the Hoxd genes are involved in regulating the growth of the undifferentiated limb mesenchyme. Restriction of the expression of successive 5′ Hoxd genes to progressively more posterior regions of the bud results in the asymmetric outgrowth of the limb mesenchyme. Later in limb development, Hoxd genes also regulate the maturation of the nascent skeletal elements. The degree of overlap in function between different Hoxd genes may be different in these early and late roles. The combined action of many Hox genes on distinct developmental processes contribute to pattern asymmetry along the A-P axis.


2020 ◽  
Author(s):  
Emily M.A. Lewis ◽  
Savita Sankar ◽  
Caili Tong ◽  
Ethan Patterson ◽  
Laura E. Waller ◽  
...  

AbstractDevelopment of the complex structure of the vertebrate limb requires carefully orchestrated interactions between multiple regulatory pathways and proteins. Among these, precise regulation of 5’ Hox transcription factor expression is essential for proper limb bud patterning and elaboration of distinct limb skeletal elements. Here, we identified Geminin (Gmnn) as a novel regulator of this process. A conditional model of Gmnn deficiency resulted in loss or severe reduction of forelimb skeletal elements, while both the forelimb autopod and hindlimb were unaffected. 5’ Hox gene expression expanded into more proximal and anterior regions of the embryonic forelimb buds in this Gmnn-deficient model. A second conditional model of Gmnn deficiency instead caused a similar but less severe reduction of hindlimb skeletal elements and hindlimb polydactyly, while not affecting the forelimb. An ectopic posterior SHH signaling center was evident in the anterior hindlimb bud of Gmnn-deficient embryos in this model. This center ectopically expressed Hoxd13, the HOXD13 target Shh, and the SHH target Ptch1, while these mutant hindlimb buds also had reduced levels of the cleaved, repressor form of GLI3, a SHH pathway antagonist. Together, this work delineates a new role for Gmnn in modulating Hox expression to pattern the vertebrate limb.SummaryThis work identifies a new role for Geminin in mouse limb development. Geminin is a nuclear protein that regulates gene expression to control several other aspects of vertebrate development.


2007 ◽  
Vol 26 (4) ◽  
pp. 224-233 ◽  
Author(s):  
Haruhiko Akiyama ◽  
H. Scott Stadler ◽  
James F. Martin ◽  
Takahiro M. Ishii ◽  
Philip A. Beachy ◽  
...  
Keyword(s):  
Limb Bud ◽  

Sign in / Sign up

Export Citation Format

Share Document