Effect of the brachypod mutation on cell adhesion and chondrogenesis in aggregates of mouse limb mesenchyme

Development ◽  
1977 ◽  
Vol 42 (1) ◽  
pp. 209-217
Author(s):  
Jackie Duke ◽  
William A. Elmer

Twelve-day normal and brachypod mouse limb mesenchyme was studied in rotation culture. Over a 3½ h period the rate of decline of single cells was significantly greater in mutant than in normal cultures, probably because the brachypod cells were more adhesive. However, the final size of the aggregates and their cell densities were the same by 24 h of incubation. On the other hand their pattern of chondrogenesis was different. Normal aggregates contained condensations with typical histotypic cartilage by 24 h of incubation, and were entirely chondrifled by 4 days in culture. The condensations in brachypod aggregates were fewer, smaller, and delayed in their chondrogenesis. Never more than 50% of the brachypod aggregate exhibited chondrogenesis. The importance of cell contact and cell density to the chondrogenic process are discussed.

Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 2085-2093 ◽  
Author(s):  
Aya M. Wada ◽  
David E. Reese ◽  
David M. Bader

Bves is a protein expressed in cells of the developing coronary vascular system, specifically in the proepicardium, migrating epithelial epicardium, delaminated vasculogenic mesenchyme and vascular smooth muscle cells. Here, we show that Bves protein undergoes a dynamic subcellular redistribution during coronary vessel development. Bves is a membrane protein with three predicted transmembrane helices, an extracellular C terminus and an intracellular N terminus, and is confined to the lateral membrane compartment of epithelial cells. When epicardial cells are dissociated into single cells in vitro, Bves accumulates in a perinuclear region until cells make contact, at which time Bves is trafficked to the cell membrane. Bves accumulates at points of cell/cell contact, such as filopodia and cell borders, before the appearance of E-cadherin, suggesting an early role in cell adhesion. While Bves shares no homology with any known adhesion molecule, transfection of Bves into L-cells readily confers adhesive behavior to these cells. Finally, Bves antibodies inhibit epithelial migration of vasculogenic cells from the proepicardium. This study provides direct evidence that Bves is a novel cell adhesion molecule and suggests a role for Bves in coronary vasculogenesis.


Development ◽  
1976 ◽  
Vol 36 (3) ◽  
pp. 489-512
Author(s):  
James B. Nardi ◽  
Fotis C. Kafatos

For explaining the Manduca wing gradient (Nardi & Kafatos, 1976) a model which postulates a proximo-distal gradient in cellular adhesiveness is considered. The model is based on Steinberg's (1963) differential adhesiveness hypothesis. Rosette formation in certain trans-posed and/or reoriented grafts can be adequately explained by this model. Several predictions, formulated by using the concept of surface free energy as a thermodynamic measure of adhesiveness, have been tested and proven correct. (1) Transposed grafts tend to assume circular forms, which are configurations of minimum free energy. (2) Because of the pressure difference expected across the interface of two cell populations with different surface free energies, cell densities increase in both distally and proximally transposed grafts. As a corollary to this rule, final size of a graft is a function of its distance from the original position.(3) Histological sections of host-graft boundaries suggest minimal cell contact at the interface. In proximal grafts placed in distal regions, cell density is far lower near the host-graft inter face, as compared to the high interior density; the peripheries of distal grafts do not show this effect. (4) Juxtaposition of three different wing regions in all possible arrangements yields the expected two-dimensional configurations. (5) Differences in adhesiveness can be demonstrated by allowing two different wing grafts to interact in an essentially neutral environment (i.e. at a leg or antenna site). As the distance between two given graft regions increases, the extent of their final contact decreases. When applied to other insect systems, the model not only offers an alternative interpretation for results currently explained by diffusible substance models, but also accounts for certain features that were unexplained by other models.


Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 161-168
Author(s):  
Jackie Duke ◽  
William A. Elmer

This study is a continuing investigation of the effect of the brachypod mouse mutation on cell interactions and chondrogenesis during early limb development. In this report, cell adhesiveness was assessed in fused fragments of brachypod and normal limb-bud mesenchyme. Examination of the interface of fused distal postaxial limb fragments show brachypod limb mesenchyme to be more adhesive than normal limb mesenchyme. Chondrogenesis within brachypod fragments is delayed and less extensive than in normal fragments. In addition, chondrogenesis within normal fragments is not affected by the juxtaposition of thebrachypod fragment, and vice versa.


1994 ◽  
Vol 127 (3) ◽  
pp. 867-878 ◽  
Author(s):  
M R Campanero ◽  
P Sánchez-Mateos ◽  
M A del Pozo ◽  
F Sánchez-Madrid

Leukocyte activation is a complex process that involves multiple cross-regulated cell adhesion events. In this report, we investigated the role of intercellular adhesion molecule-3 (ICAM-3), the third identified ligand for the beta 2 integrin leukocyte function-associated antigen-1 (LFA-1), in the regulation of leukocyte adhesion to ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), and the 38- and 80-kD fragments of fibronectin (FN40 and FN80). The activating anti-ICAM-3 HP2/19, but not other anti-ICAM-3 mAb, was able to enhance T lymphoblast adhesion to these proteins when combined with very low doses of anti-CD3 mAb, which were unable by themselves to induce this phenomenon. In contrast, anti-ICAM-1 mAb did not enhance T cell attachment to these substrata. T cell adhesion to ICAM-1, VCAM-1, FN40, and FN80 was specifically blocked by anti-LFA-1, anti-VLA alpha 4, and anti-VLA alpha 5 mAb, respectively. The activating anti-ICAM-3 HP2/19 was also able to specifically enhance the VLA-4- and VLA-5-mediated binding of leukemic T Jurkat cells to VCAM-1, FN40, and FN80, even in the absence of cooccupancy of the CD3-TcR complex. We also studied the localization of ICAM-3, LFA-1, and the VLA beta 1 integrin, by immunofluorescence microscopy, on cells interacting with ICAM-1, VCAM-1 and FN80. We found that the anti-ICAM-3 HP2/19 mAb specifically promoted a dramatic change on the morphology of T lymphoblasts when these cells were allowed to interact with those adhesion ligands. Under these conditions, it was observed that a large cell contact area from which an uropod-like structure (heading uropod) was projected toward the outer milieu. However, when T blasts were stimulated with other adhesion promoting agents as the activating anti-VLA beta 1 TS2/16 mAb or phorbol esters, this structure was not detected. The anti-ICAM-3 TP1/24 mAb was also unable to induce this phenomenon. Notably, a striking cell redistribution of ICAM-3 was induced specifically by the HP2/19 mAb, but not by the other anti-ICAM-3 mAb or the other adhesion promoting agents. Thus, ICAM-3 was almost exclusively concentrated in the most distal portion of the heading uropod whereas either LFA-1 or the VLA beta 1 integrin were uniformly distributed all over the large contact area. Moreover, this phenomenon was also observed when T cells were specifically stimulated with the HP2/19 mAb to interact with TNF alpha-activated endothelial cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1961 ◽  
Vol 38 (4) ◽  
pp. 833-849
Author(s):  
B. M. SHAFFER

1. In cloned populations aggregation centres are started by the differentiation of single cells called founders. These attract their neighbours and induce them to attract theirs. 2. Founders vary in their degree and rate of differentiation. Those most highly differentiated are rounded up, stationary, and highly adhesive. They are very different from the ‘I-cells’ and hypothetical ‘initiator’ cells described in the literature. 3. A technique has been developed for reducing a centre to a monolayer of cells and dispersing them to any desired extent. This reveals the founder if not previously apparent. The original founder will repeatedly re-organize a group of cells subjected to successive dispersals, though additional founders may eventually differentiate among them. 4. If a young aggregate is dispersed, the founder killed, and further founder differentiation inhibited, the cells do not re-aggregate. 5. If kept separate a founder invariably dedifferentiates within a few hours. 6. Illuminating a culture produces an outburst of founder activity. If the cells are sandwiched between agar and glass this outburst is delayed. And if sandwiched cells are kept in darkness the differentiation of founders is very severely inhibited, even at extremely high cell densities. In the same conditions aggregation streams once started grow extensively. The developmental pathway of the founder appears to be quite different from that of the other cells in the aggregate. 7. Re-aggregation after dispersal is not inhibited by a density of edible bacteria that would suffice to keep cells in the vegetative state. 8. A separate, elongated cell oriented by an acrasin gradient may directly reverse its direction of movement if the gradient is reversed.


2008 ◽  
Vol 294 (5) ◽  
pp. L942-L954 ◽  
Author(s):  
Sean G. Brown ◽  
Michael Gallacher ◽  
Richard E. Olver ◽  
Stuart M. Wilson

Analysis of membrane currents recorded from hormone-deprived H441 cells showed that the membrane potential ( Vm) in single cells (approximately −80 mV) was unaffected by lowering [Na+]o or [Cl−]o, indicating that cellular Na+ and Cl− conductances ( GNa and GCl, respectively) are negligible. Although insulin (20 nM, ∼24 h) and dexamethasone (0.2 μM, ∼24 h) both depolarized Vm by ∼20 mV, the response to insulin reflected a rise in GCl mediated via phosphatidylinositol 3-kinase (PI3K) whereas dexamethasone acted by inducing a serum- and glucocorticoid-regulated kinase 1 (SGK1)-dependent rise in GNa. Although insulin stimulation/PI3K-P110α expression did not directly increase GNa, these maneuvers augmented the dexamethasone-induced conductance. The glucocorticoid/SGK1-induced GNa in single cells discriminated poorly between Na+ and K+ ( PNa/ PK ∼0.6), was insensitive to amiloride (1 mM), but was partially blocked by LaCl3 (La3+; 1 mM, ∼80%), pimozide (0.1 mM, ∼40%), and dichlorobenzamil (15 μM, ∼15%). Cells growing as small groups, on the other hand, expressed an amiloride-sensitive (10 μM), selective GNa that displayed the same pattern of hormonal regulation as the nonselective conductance in single cells. These data therefore 1) confirm that H441 cells can express selective or nonselective GNa ( 14 , 48 ), 2) show that these conductances are both induced by glucocorticoids/SGK1 and subject to PI3K-dependent regulation, and 3) establish that cell-cell contact is vitally important to the development of Na+ selectivity and amiloride sensitivity.


1998 ◽  
Vol 142 (4) ◽  
pp. 1105-1119 ◽  
Author(s):  
Cynthia L. Adams ◽  
Yih-Tai Chen ◽  
Stephen J Smith ◽  
W. James Nelson

Cadherin-mediated adhesion initiates cell reorganization into tissues, but the mechanisms and dynamics of such adhesion are poorly understood. Using time-lapse imaging and photobleach recovery analyses of a fully functional E-cadherin/GFP fusion protein, we define three sequential stages in cell–cell adhesion and provide evidence for mechanisms involving E-cadherin and the actin cytoskeleton in transitions between these stages. In the first stage, membrane contacts between two cells initiate coalescence of a highly mobile, diffuse pool of cell surface E-cadherin into immobile punctate aggregates along contacting membranes. These E-cadherin aggregates are spatially coincident with membrane attachment sites for actin filaments branching off from circumferential actin cables that circumscribe each cell. In the second stage, circumferential actin cables near cell–cell contact sites separate, and the resulting two ends of the cable swing outwards to the perimeter of the contact. Concomitantly, subsets of E-cadherin puncta are also swept to the margins of the contact where they coalesce into large E-cadherin plaques. This reorganization results in the formation of a circumferential actin cable that circumscribes both cells, and is embedded into each E-cadherin plaque at the contact margin. At this stage, the two cells achieve maximum contact, a process referred to as compaction. These changes in E-cadherin and actin distributions are repeated when additional single cells adhere to large groups of cells. The third stage of adhesion occurs as additional cells are added to groups of >3 cells; circumferential actin cables linked to E-cadherin plaques on adjacent cells appear to constrict in a purse-string action, resulting in the further coalescence of individual plaques into the vertices of multicell contacts. The reorganization of E-cadherin and actin results in the condensation of cells into colonies. We propose a model to explain how, through strengthening and compaction, E-cadherin and actin cables coordinate to remodel initial cell–cell contacts to the final condensation of cells into colonies.


BMC Zoology ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ansa E. Cobham ◽  
Christen K. Mirth

Abstract Background Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body. Main text Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics. Conclusion In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.


1993 ◽  
Vol 13 (4) ◽  
pp. 2554-2563 ◽  
Author(s):  
D Wojciechowicz ◽  
C F Lu ◽  
J Kurjan ◽  
P N Lipke

alpha-Agglutinin is a cell adhesion glycoprotein expressed on the cell wall of Saccharomyces cerevisiae alpha cells. Binding of alpha-agglutinin to its ligand a-agglutinin, expressed by a cells, mediates cell-cell contact during mating. Analysis of truncations of the 650-amino-acid alpha-agglutinin structural gene AG alpha 1 delineated functional domains of alpha-agglutinin. Removal of the C-terminal hydrophobic sequence allowed efficient secretion of the protein and loss of cell surface attachment. This cell surface anchorage domain was necessary for linkage to a glycosyl phosphatidylinositol anchor. A construct expressing the N-terminal 350 amino acid residues retained full a-agglutinin-binding activity, localizing the binding domain to the N-terminal portion of alpha-agglutinin. A 278-residue N-terminal peptide was inactive; therefore, the binding domain includes residues between 278 and 350. The segment of alpha-agglutinin between amino acid residues 217 and 308 showed significant structural and sequence similarity to a consensus sequence for immunoglobulin superfamily variable-type domains. The similarity of the alpha-agglutinin-binding domain to mammalian cell adhesion proteins suggests that this structure is a highly conserved feature of adhesion proteins in diverse eukaryotes.


1982 ◽  
Vol 208 (2) ◽  
pp. 473-478 ◽  
Author(s):  
D D McAbee ◽  
F Grinnell

Studies were carried out to learn more about the critical SH groups involved in cell spreading. Pretreatment of suspended baby hamster kidney (BHK) cells with 3 mM-iodoacetate or iodoacetamide for 10 min at 4 degrees C completely inhibited the ability of the cells to spread on fibronectin-coated substrata. If, however, BHK cells were permitted to attach and spread before being treated with the SH-binding reagents, and then harvested by trypsinization and assayed for spreading on fibronectin-coated substrata, there was no inhibition of cell spreading. The extent of prior attachment required before the cells became insensitive to the SH-binding reagents was tested and was found to occur early during the cell adhesion process, before any cell spreading was observed. In analytical experiments, there did not appear to be any difference in the total number of SH groups between suspended or spread cells as determined with 5,5′-dithiobis-(2-nitrobenzoic acid). The uptake of radiolabelled iodoacetate into intact spread cells, however, was found to be 3.5 times less than that found with suspended cells. On the other hand, the distribution of incorporated radioactivity into suspended and spread cells was similar. Most of the radioactivity (approximately 70%) was incorporated into small molecules (e.g. glutathione and cysteine), less (approximately 20%) was incorporated into cytoplasmic proteins, and the least incorporation (approximately 10%) was into the cell cytoskeleton. The data are interpreted to indicate there is a decreased permeability of spread cells to the SH-binding reagents.


Sign in / Sign up

Export Citation Format

Share Document