Effects of L-phenylalanine on somite formation in the early chick embryo

Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 175-190
Author(s):  
K. Palén ◽  
L. Thörneby

Chick embryos were treated in ovo and in vitro with L-phenylalanine from the intermediate streak stage (Hamburger & Hamilton stage 3, 12–13 h of incubation) to the 7-somite stage (H & H stage 9, 29–33 h of incubation). Treatment in ovo resulted in a large number of embryos developing somite blocks, i.e. imperfectly segmented somites. In embryos treated at an early developmental stage (12–21 h of incubation), the blocks of unsegmented somite mesoderm occurred mostly in the somite pairs 1–5, whereas treatment that began at a later stage (24–30 h of incubation) caused blocks in the somite pairs 5–10, i.e. the appearance of blocks of unsegmented somite mesoderm is correlated in time with the onset of the treatment. No difference regarding mitotic indices could be distinguished between normally segmented somites and blocks of unsegmented somite mesoderm. Autoradiography based on tritiated L-phenylalanine showed no regional differences in labelling of the chick embryo body. Electronmicroscopical observations indicate a slightly suppressed formation of microvilli in the cells of the unsegmented mesoderm blocks compared with cells in normally segmented somites. The observed disturbances are probably caused by a suppressed yolk granule decomposition in the developing somite cells. The experiments in vitro support the findings in the in ovo material; at the same time, they reveal an unexpectedly slow diffusion of L-phenylalanine through the vitelline membrane.

1951 ◽  
Vol 94 (5) ◽  
pp. 401-413 ◽  
Author(s):  
M. Michael Sigel ◽  
Anthony J. Girardi ◽  
Emma G. Allen

Because of the peculiar properties of the psittacosis-lymphogranuloma group of viruses, the pattern of multiplication in the allantois of the chick embryo of one of their number, meningopneumonitis virus, was studied. This was done by determination of the changes in its infectivity for mice and chick embryos. Titration of infectivity in embryos proved to be a more sensitive procedure than titration in mice; the latter procedure however, had the advantage of greater simplicity and gave more clear-cut results. The mouse titration method was used in most of the experiments. Following inoculation of virus into the allantois, there was a slow decrease in infectivity in the allantoic fluids followed by an increase due to appearance of new virus between 24 and 48 hours. The slope of declining infectivity in the allantoic fluids in ovo was similar if not identical with the slope of decreasing infectivity in allantoic fluids in vitro caused by thermal degradation of virus. Multiplication of the virus in allantoic membranes was characterized by the following pattern: (a) Increase in infectivity in the first few hours (exact duration of increase depended on concentration of virus in inoculum) due to adsorption of virus. (b) Decrease in infectivity up to about 20 to 24 hours. (c) Increase in infectivity due to appearance of the new generation of virus. The growth curve of meningopneumonitis is analyzed and the pattern of growth is discussed in the light of the present concepts of viral multiplication.


Development ◽  
1957 ◽  
Vol 5 (1) ◽  
pp. 51-59
Author(s):  
E. M. Pantelouris ◽  
L. Mulherkar

In the experiments to be reported here isotopic tracer techniques were combined with the techniques of chick embryo culture in vitro and of organizer transplantations. The distribution of methionine taken up under these conditions was first tested by autoradiography; methionine was also used to label organizer grafts and observations were made on the derivatives from such grafts; finally, the transfer of labelled molecules from the grafts to the induced structures was to some extent investigated. The first use of radioactive tracers to investigate the transfer of substances in induction was by Waddington (1950), employing P32 on Amphibian embryos. Our experiments can be viewed as an extension of these investigations and those of Abercrombie & Causey (1950) and Islam (1953) who first used radioactive tracers to label embryonic grafts in chick embryos and explants respectively, and of Feldman & Waddington's (1955) work on the uptake of labelled methionine by the chick embryo in ovo.


1977 ◽  
Vol 164 (3) ◽  
pp. 533-539 ◽  
Author(s):  
A Oikarinen

Collagen synthesis and the activities of prolyl hydroxylase, lysyl hydroxylase, collagen galactosyltransferase and collagen glucosyltransferase were studied in isolated chick-embryo tendon cells after the administration of cortisol acetate to the chick embryos. When the steroid was injected 1 day before isolation of the tendon cells, collagen synthesis was decreased, even though the enzyme activities were not changed. When cortisol acetate was given as repeated injections over a period of 4 days, both collagen synthesis and the enzyme activities decreased. The hydroxylase activities decreased even more than the two collagen glycosyltransferase activities, both in isolated cells and in whole chick embryos. The amount of prolyl hydroxylase protein diminished to the same extent as the enzyme activity, indicating that cortisol acetate inhibits enzyme synthesis. The inhibitory effect of cortisol acetate on collagen synthesis and on the enzyme activities was partially reversible in 3 days. Total protein synthesis was completely restored within this time. Only massive doses of cortisol acetate inhibited collagen synthesis in vitro. Additional experiments indicated that cortisol acetate did not decrease the rate of the enzyme reactions when added directly to the enzyme incubation mixtures. The results suggest that cortisol acetate decreases collagen synthesis both by its direct effect on collagen polypeptide-chain synthesis and by decreasing the activities of enzymes involved in post-translational modifications.


Development ◽  
1959 ◽  
Vol 7 (1) ◽  
pp. 66-72
Author(s):  
L. Gwen Britt ◽  
Heinz Herrmann

The recent development of techniques originally devised by Waddington (1932) for the maintenance of the explanted chick embryo (Spratt, 1947; New, 1955; Wolff & Simon, 1955) has opened the possibility of determining quantitatively some parameters of the developmental processes occurring in embryonic tissues under these conditions. As a result of such measurements, protein accumulation in explanted embryos was found to be much smaller than in embryos developing in the egg. On the other hand, the progress of somite formation was found to take place at similar rates in embryos developing as explants or in situ (Herrmann & Schultz, 1958). The slow rate of protein accumulation in the explanted embryos made it seem desirable to investigate whether under some other conditions of explantation protein accumulation would approach more closely the rate of protein formation observed in the naturally developing embryo.


Development ◽  
1960 ◽  
Vol 8 (4) ◽  
pp. 369-375
Author(s):  
P. H. S. Silver

It seems to be generally accepted that experimenting in ovo on the chick during the early stages of development (up to about 48 hours) is fraught with the greatest difficulty. After about this time no serious technical problems arise and a high proportion of successful results can be expected. It is natural to ask why there should be this change-over from extreme difficulty to reasonable simplicity. New (1955) attributed to this ‘inaccessibility of the chick embryo in the egg’ the invention of his own and many other in vitro methods during the last 30 years. There is no doubt that, when short-term experiments only are required, in vitro methods will probably always be preferred. But all in vitro methods suffer from the disadvantage that the embryo cannot be expected to survive for more than 48 hours or so after explantation.


Development ◽  
1980 ◽  
Vol 59 (1) ◽  
pp. 217-222
Author(s):  
Yal C. Sheffield ◽  
Robert E. Seegmiller

The analogue and antagonist of nicotinamide, 6-aminonicotinamide (6-AN), impairs cartilage formation and results in shortening of the limbs when administered to chick embryos. Studies have shown that 6-AN forms an abnormal NAD analogue which inhibits the activity of NAD-dependent enzymes associated with production of ATP. To determine if an effect on ATP synthesis might be associated with the mechanism of teratogenesis in the chick embryo, ATP levels of cartilage from day-8 chick embryos treated in vitro were assayed in relation to biosynthesis of protein, DNA and chondroitin sulfate. Incorporation of 35SO4− was inhibited by 6 h of treatment with 10 µg/ml of 6-AN, whereas incorporation of [3H]thymidine and [3H]amino acid was not inhibited until 12 h. Incorporation of [3H]- glucosamine was increased at all treatment times. A decrease in the level of ATP preceded any detectable inhibition of precursor incorporation. These results are consistent with the hypothesis that 6-AN inhibits chondroitin sulfate synthesis through a reduction in the level of ATP in chondrocytes.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3221-3227 ◽  
Author(s):  
Stephanie Constantin ◽  
Alain Caraty ◽  
Susan Wray ◽  
Anne H. Duittoz

Pulsatile release of GnRH-1 is critical to stimulate gonadotropes of the anterior pituitary. This secretory pattern seems to be inherent to GnRH-1 neurons, however, the mechanisms underlying such episodical release remain unknown. In monkey nasal explants, the GnRH-1 population exhibits synchronized calcium events with the same periodicity as GnRH-1 release, suggesting a link, though the sequence of events was unclear. GnRH-1 neurons in mouse nasal explants also exhibit synchronized calcium events. In the present work, GnRH-1 release was assayed in mouse nasal explants using radioimmunology and its relationship with calcium signaling analyzed. GnRH-1 neurons generated episodical release as early as 3 d in vitro (div) and maintained such release throughout the period studied (3–21 div). The pulse frequency remained constant, suggesting that the pulse generator is operative at an early developmental stage. In contrast, pulse amplitude increased 2-fold between 3 and 7 div, and again between 7 and 14 div, suggesting maturation in synthesizing and/or secretory mechanisms. To evaluate these possibilities, total GnRH-1 content was measured. Only a small increase in GnRH-1 content was detected between 7 and 14 div, whereas a large increase occurred between 14 and 21 div. These data indicate that GnRH-1 content was not a limiting factor for the amplitude of the pulses at 7 div but that the secretory mechanisms mature between 3 and 14 div. The application of kisspeptin-10 revealed the ability of GnRH-1 neurons to integrate signals from natural ligands into a secretory response. Finally, simultaneous sampling of medium and calcium imaging recordings indicated that the synchronized calcium events and secretory events are congruent.


1972 ◽  
Vol 51 (2) ◽  
pp. 707-709 ◽  
Author(s):  
J.B. Ramsey ◽  
M.A. Boone
Keyword(s):  

2003 ◽  
Vol 66 (8) ◽  
pp. 1368-1373 ◽  
Author(s):  
G. J. FLEISCHMAN ◽  
C. L. NAPIER ◽  
D. STEWART ◽  
S. A. PALUMBO

The growth response of Salmonella Enteritidis (SE) on the vitelline membrane in vitro was studied with the use of a special tube devised specifically for the inoculation of SE onto the vitelline membrane and for the sampling of the yolk near the inoculation site. This latter ability allowed the detection of the movement of SE into the yolk. The growth of SE on the membrane was compared with that of SE inoculated into yolk and albumen in vitro and in ovo in fresh in-shell eggs. The incubation time was 2 days, and the incubation temperatures were 4, 8, 15, 27, and 37°C. Comparison of the results obtained for in vitro growth showed that at 4, 8, and 15°C, SE behaved as if it were in the albumen, with its numbers decreasing over time. At 27 and 37°C, SE grew as if it were in yolk, with a maximum increase of 4.5 log CFU after 2 days at 37°C. In no experiments involving growth on the vitelline membrane did SE appear in the yolk. Comparisons between in vitro and in ovo growth responses of SE in yolk and albumen indicate that SE growth on the membrane parallels that in the in-shell egg.


Sign in / Sign up

Export Citation Format

Share Document